In the moduli space of curves of genus $g$, $\mathcal{M}_g$, let $\mathcal{GP}_g$ be the locus of curves that do not satisfy the Gieseker-Petri theorem. In the genus seven case we show that $\mathcal{GP}_7$ is a divisor in $\mathcal{M}_7$.
Nello spazio dei moduli delle curve di genere $g$, $\mathcal{M}_g$, indichiamo con $\mathcal{GP}_g$ il luogo delle curve che non soddisfano il teorema di Gieseker-Petri. In questo lavoro noi proviamo che nel caso di genere sette, $\mathcal{GP}_7$ è un divisore di $\mathcal{M}_7$.
@article{BUMI_2005_8_8B_3_697_0, author = {Abel Castorena}, title = {Curves of genus seven that do not satisfy the Gieseker-Petri theorem}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {8-A}, year = {2005}, pages = {697-706}, zbl = {1178.14024}, mrnumber = {2182424}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2005_8_8B_3_697_0} }
Castorena, Abel. Curves of genus seven that do not satisfy the Gieseker-Petri theorem. Bollettino dell'Unione Matematica Italiana, Tome 8-A (2005) pp. 697-706. http://gdmltest.u-ga.fr/item/BUMI_2005_8_8B_3_697_0/
[1] Su una congettura di Petri, Comment. Math. Helvetici, 56 (1981) 1-38. | MR 615613 | Zbl 0505.14002
- ,[2] 267, Springer-Verlag 1984. | MR 770932 | Zbl 0559.14017
- - - , Geometry of Algebraic Curves Volume I , Grundlehrem der Mathematischen Wissenschaften[3] Irreducibility of some families of linear series with Brill-Noether Number $-1$, Ann. Scient. Ec. Norm. Sup. 4 série t. 22 (1989), 33-53. | MR 985853 | Zbl 0691.14006
- ,[4] Singular 2.0 A Computer Algebra System for Polinomial Computations, Centre for Computer Algebra, University of Kaiserslautern (2001), http://www.singular.uni-kl.de. | Zbl 0902.14040
- - ,[5] 187, Springer-Verlag 1998. | MR 1631825 | Zbl 0913.14005
- , Moduli of curves, Graduate texts in Mathematics[6] 52, Springer-Verlag1997. | MR 463157 | Zbl 0367.14001
, Algebraic Geometry, Graduate texts in Mathematics[7] A generalized principal ideal theorem with applications to Brill- Noether theory, Invent. Math.132 (1998), 73-89. | MR 1618632 | Zbl 0935.14018
,[8] half-canonical series on algebraic curves, Trans. Amer. Math. Soc.302 (1987), 99-115. | MR 887499 | Zbl 0627.14022
,[9] The divisor of curves with a vanishing theta-null, Compositio Mathematica66 (1988), 15-22. | MR 937985 | Zbl 0663.14017
,