Curves in Lorentzian spaces
Nešović, E. ; Petrović-Torgašev, M. ; Verstraelen, L.
Bollettino dell'Unione Matematica Italiana, Tome 8-A (2005), p. 685-696 / Harvested from Biblioteca Digitale Italiana di Matematica

The notion of ``hyperbolic'' angle between any two time-like directions in the Lorentzian plane L2 was properly defined and studied by Birman and Nomizu [1,2]. In this article, we define the notion of hyperbolic angle between any two non-null directions in L2 and we define a measure on the set of these hyperbolic angles. As an application, we extend Scofield's work on the Euclidean curves of constant precession [9] to the Lorentzian setting, thus expliciting space-like curves in L3 whose natural equations express their curvature and torsion as elementary eigenfunctions of their Laplacian.

La nozione di angolo iperbolico tra due qualsiasi direzioni simili al tempo nel piano di Lorentz L2 è stata appropriatamente definita e studiata da Birman e Nomizu [1, 2]. In questo articolo definiamo la nozione di angolo iperbolico tra due qualsiasi direzioni non nulle in L2 e definiamo una misura sull'insieme di questi angoli iperbolici. Come applicazione, estendiamo il lavoro di Scofield sulle curve euclidee di precessione costante [9] all'ambiente di Lorentz, rendendo così esplicite le curve simili allo spazio in L3 le cui equazioni naturali esprimono la loro curvatura e torsione come autofunzioni elementari del loro Laplaciano.

Publié le : 2005-10-01
@article{BUMI_2005_8_8B_3_685_0,
     author = {E. Ne\v sovi\'c and M. Petrovi\'c-Torga\v sev and L. Verstraelen},
     title = {Curves in Lorentzian spaces},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {8-A},
     year = {2005},
     pages = {685-696},
     zbl = {1178.53071},
     mrnumber = {2182423},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2005_8_8B_3_685_0}
}
Nešović, E.; Petrović-Torgašev, M.; Verstraelen, L. Curves in Lorentzian spaces. Bollettino dell'Unione Matematica Italiana, Tome 8-A (2005) pp. 685-696. http://gdmltest.u-ga.fr/item/BUMI_2005_8_8B_3_685_0/

[1] Birman, G. S. - Nomizu, K., Trigonometry in Lorentzian geometry, Amer. Math. Monthly 91, (1984), 543-549. | MR 764793 | Zbl 0555.51009

[2] Birman, G. S. - Nomizu, K., The Gauss-Bonnet theorem for 2-dimensional space-times, Michigan Math. J., 31 (1984), 77-81. | MR 736471 | Zbl 0591.53053

[3] Borsuk, K. - Szmielew, W., Foundations of Geometry, North-Holland (Amsterdam, 1960). | Zbl 0093.33301

[4] Chen, B. Y., Total mean curvature and submanifolds of finite type, World Scientific (Singapore, 1984). | MR 749575 | Zbl 0537.53049

[5] F.Dillen - L.Verstraelen (eds.), Handbook of Differential geometry, Vol. I (Elsevier, Amsterdam, 2000). | MR 1736851 | Zbl 1069.00010

[6] Nešović, E., Differential geometry of curves in Minkowski space, Doctoral thesis, University of Kragujevac, Faculty of Science (Kragujevac, 2002).

[7] O'Neill, B., Semi-Riemannian Geometry, Academic Press (New York, 1983). | MR 719023 | Zbl 0531.53051

[8] Petrović, M. - Verstraelen, J. - Verstraelen, L., Principal normal spectral variations of space curves, Proyecciones 19 (2000), 141-155. | MR 1778799

[9] Scofield, P. D., Curves of constant precession, Amer. Math. Monthly, 102 (1995), 531-537. | MR 1336639 | Zbl 0881.53002

[10] Struik, D. J., Lectures on classical differential geometry, Addison-Wesley (Boston, 1950). | MR 36551 | Zbl 0105.14707

[11] Synge, J. L., Relativity: the special theory, North-Holland (Amsterdam, 1972). | Zbl 0071.21804