Nonlinear parabolic equations with natural growth in general domains
Dall'aglio, A. ; Giachetti, D. ; Puel, J.-P.
Bollettino dell'Unione Matematica Italiana, Tome 8-A (2005), p. 653-683 / Harvested from Biblioteca Digitale Italiana di Matematica

We prove an existence result for a class of parabolic problems whose principal part is the $p$-Laplace operator or a more general Leray-Lions type operator, and featuring an additional first order term which grows like $|\nabla u |^{p}$. Here the spatial domain can have infinite measure, and the data may be not regular enough to ensure the boundedness of solutions. As a consequence, solutions are obtained in a class of functions with exponential integrability. An existence result of bounded solutions is also given under additional hypotheses.

In questo articolo si dimostra un risultato di esistenza per una classe di problemi parabolici la cui parte principale è l'operatore $p$-Laplaciano, oppure un operatore più generale del tipo di Leray-Lions, e in cui compare un termine aggiuntivo del primo ordine che cresce come $|\nabla u |^{p}$. Il dominio spaziale in cui si risolve il problema può avere misura infinita, e i dati possono non avere la regolarità necessaria per garantire la limitatezza delle soluzioni. Di conseguenza, si ottengono soluzioni in una classe di funzioni con integrabilità esponenziale. Sotto ipotesi più forti, si prova l'esistenza di soluzioni limitate.

Publié le : 2005-10-01
@article{BUMI_2005_8_8B_3_653_0,
     author = {A. Dall'aglio and D. Giachetti and J.-P. Puel},
     title = {Nonlinear parabolic equations with natural growth in general domains},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {8-A},
     year = {2005},
     pages = {653-683},
     zbl = {1117.35035},
     mrnumber = {2182422},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2005_8_8B_3_653_0}
}
Dall'aglio, A.; Giachetti, D.; Puel, J.-P. Nonlinear parabolic equations with natural growth in general domains. Bollettino dell'Unione Matematica Italiana, Tome 8-A (2005) pp. 653-683. http://gdmltest.u-ga.fr/item/BUMI_2005_8_8B_3_653_0/

[1] Aronson, D. G. - Serrin, J., Local behavior of solutions of quasilinear parabolic equations, Arch. Rat. Mech. Anal. 25 (1967), 81-122. | MR 244638 | Zbl 0154.12001

[2] Blanchard, D. - Porretta, A., Nonlinear parabolic equations with natural growth terms and measure initial data, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4), 30 (2001), 583-622. | MR 1896079 | Zbl 1072.35089

[3] Boccardo, L. - Murat, F. - Puel, J.-P., Existence de solutions non bornées pour certaines équations quasi-linéaires, Portugal. Math., 41, n. 1-4 (1982), 507-534. | MR 766873 | Zbl 0524.35041

[4] Boccardo, L. - Murat, F. - Puel, J.-P., Existence of bounded solutions for nonlinear elliptic unilateral problems, Ann. Mat. Pura Appl., (4) 152 (1988), 183-196. | MR 980979 | Zbl 0687.35042

[5] Boccardo, L. - Murat, F. - Puel, J.-P., Existence results for some quasilinear parabolic equations, Nonlinear Anal., 13 (1989), 373-392. | MR 987375 | Zbl 0705.35066

[6] Boccardo, L. - Murat, F. - Puel, J.-P., $L^1$ estimate for some nonlinear elliptic partial differential equations and application to an existence result, SIAM J. Math. Anal. (2), 23 (1992), 326-333. | MR 1147866 | Zbl 0785.35033

[7] Boccardo, L. - Murat, F. - Puel, J.-P., Résultats d'existence pour certains problémes elliptiques quasilinéaires, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4), 11 (1984), 213-235. | MR 764943 | Zbl 0557.35051

[8] Dall'Aglio, A. - De Cicco, V. - Giachetti, D. - Puel, J.-P., Existence of solutions for nonlinear elliptic equations in unbounded domains, Nonlinear Diff. Eq. and Appl., to appear. | MR 2182422 | Zbl 1120.35038

[9] Dall'Aglio, A. - Giachetti, D. - Puel, J.-P., Nonlinear elliptic equations with natural growth in general domains, Ann. Mat. Pura Appl., to appear. | MR 1939689 | Zbl 1097.35050

[10] Dall'Aglio, A. - Orsina, L., Nonlinear parabolic equations with natural growth conditions and $L^1$ data, Nonlin. Anal. TMA, 27, no. 1 (1996), 59-73. | MR 1390712 | Zbl 0861.35045

[11] Di Benedetto, E., Degenerate Parabolic Equations, Springer-Verlag, New York, 1993. | Zbl 0794.35090

[12] Donato, P. - Giachetti, D., Quasilinear elliptic equations with quadratic growth on unbounded domains, Nonlin. Anal., 10 (1986), 791-804. | MR 851147 | Zbl 0602.35036

[13] Ferone, V. - Murat, F., Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small, Nonlinear Anal., 42 (2000), 1309-1326. | MR 1780731 | Zbl 1158.35358

[14] Ferone, V. - Posteraro, M. R. - Rakotoson, J.-M., $L^1$-estimates for nonlinear elliptic problems with p-growth in the gradient, J. Ineq. Appl., 3 (1999), 109-125. | MR 1733106 | Zbl 0928.35060

[15] Ferone, V. - Posteraro, M. R. - Rakotoson, J.-M., Nonlinear parabolic equations with p-growth and unbounded data, C. R. Acad. Sci. Paris Sér. I Math., 328, no. 4 (1999), 291-296. | MR 1675940 | Zbl 0922.35075

[16] Ferone, V. - Posteraro, M. R. - Rakotoson, J.-M., Nonlinear Parabolic Problems with Critical Growth and Unbounded Data, Indiana Math. J. 50, no. 3 (2001), 1201- 1215. | MR 1871353 | Zbl pre01780897

[17] Grenon, N., Existence results for some quasilinear parabolic problems, Ann. Mat. Pura Appl., 4 (1993), 281-313. | MR 1271423 | Zbl 0806.35089

[18] Grenon, N., Asymptotic behaviour for some quasilinear parabolic equations, Nonlinear Anal., 20 (1993), 755-766. | MR 1214741 | Zbl 0812.35065

[19] Landes, R. - Mustonen, V., On parabolic initial-boundary value problems with critical growth for the gradient, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11 (1994), 135-158. | MR 1267364 | Zbl 0836.35078

[20] Leray, J. - Lions, J.L., Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France, 93 (1965), 97- 107. | MR 194733 | Zbl 0132.10502

[21] Lions, J.-L., Quelques mèthodes de rèsolution des problémes aux limites non linèaires, Dunod, Gauthier-Villars, Paris, 1969. | MR 259693 | Zbl 0189.40603

[22] Nicolosi, F., Weak solutions of boundary value problems for degenerate parabolic operators in unbounded open sets. Boll. Un. Mat. Ital.6-C, no. 1 (1985), 269-278. | MR 805219 | Zbl 0594.35051

[23] Orsina, L. - Porzio, M.M., $L^\infty(Q)$-estimate and existence of solutions for some nonlinear parabolic equations, Boll. U.M.I. 6-B (1992), 631-647. | MR 1191957 | Zbl 0783.35026

[24] Puel, J.-P., A compactness theorem in quasilinear parabolic problems and application to an existence result, Nonlinear parabolic equations: qualitative properties of solutions (Rome, 1985), Pitman Res. Notes Math. Ser., 149, Longman Sci. Tech., Harlow (1987), 189-199. | MR 901109 | Zbl 0655.35035

[25] Simon, J., Compact sets in the space $L^p(0, T; B)$, Ann. Mat. Pura Appl. (4) 146 (1987), 65-96. | MR 916688 | Zbl 0629.46031

[26] Stampacchia, G., Equations elliptiques du second ordre à coefficients discontinus. Séminaire de Mathématiques Supérieures, No. 16Les Presses de l'Université de Montréal, Montrèal, Que. (1966). | MR 251373 | Zbl 0151.15501