In this paper we introduce and analyze some relations between the Pascal matrix and a new class of numerical methods for differential equations obtained generalizing the Adams methods. In particular, we shall prove that these methods are suitable for solving stiff problems since their absolute stability regions contain the negative half complex plane.
In questo articolo analizziamo i legami tra la matrice di Pascal e una nuova classe di metodi numerici per equazioni differenziali ottenuti come generalizzazione dei metodi di Adams. In particolare, proveremo che i metodi in tale classe possono essere utilizzati per risolvere problemi di tipo stiff in quanto le regioni di assoluta stabilità ad essi associate contengono il semipiano negativo.
@article{BUMI_2005_8_8B_3_639_0, author = {Lidia Aceto}, title = {Some applications of the Pascal matrix to the study of numerical methods for differential equations}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {8-A}, year = {2005}, pages = {639-651}, zbl = {1117.65118}, mrnumber = {2182421}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2005_8_8B_3_639_0} }
Aceto, Lidia. Some applications of the Pascal matrix to the study of numerical methods for differential equations. Bollettino dell'Unione Matematica Italiana, Tome 8-A (2005) pp. 639-651. http://gdmltest.u-ga.fr/item/BUMI_2005_8_8B_3_639_0/
[1] On the Stability Problem arising in Numerical Methods for ODEs, Ph. D. Thesis, Genova, 2001.
,[2] On the A-stable methods in the GBDF class, Nonlinear Analysis: Real World Applications, 3 (2002), 9-23. | MR 1941945 | Zbl 1021.65033
- ,[3] A Boundary Value Approach to the Numerical Solution of Initial Value Problems by Multistep Methods, J. Difference Eq. Appl., 1 (1995), 353-367. | MR 1350450 | Zbl 0861.65062
- ,[4] Boundary Value Methods based on Adams-type methods, Appl. Num. Math., 18 (1995), 23-35. | MR 1357904 | Zbl 0834.65065
- ,[5] Boundary Value Method: the Third Way Between Linear Multistep and Runge-Kutta Methods, Comput. Math. Appl., 36 (1998), 269-284. | MR 1666145 | Zbl 0933.65082
- ,[6] | MR 1673796
- , Solving Differential Problems by Multistep Initial and Boundary Value Methods, Gordon and Breach Science Publishers, Amsterdam, 1998.[7] 14, Springer-Verlag, Berlin, 1991. | MR 1111480 | Zbl 0729.65051
- , Solving Ordinary Differential Equations II, Springer Series in Computational Mathematics, vol.[8] GAM, August 1997. Available via www at URL http://www.dm.uniba.it/Amazzia/ode/readme.html
- ,[9] Solving Ordinary Differential Equations by Generalized Adams Methods: properties and implementation techniques, Appl. Num. Math., 28 (1998), 107-126. | MR 1655155 | Zbl 0926.65076
- ,[10] On the Stability and Accuracy of One-Step Methods for Solving Stiff Systems of Ordinary Differential Equations, Math. of Comput., 28 (1974), 145-162. | MR 331793 | Zbl 0309.65034
- , , Numerical Solution of Ordinary Differential Equations, Chapman & Hall, New York, 1994.