On a class of Monge-Ampère type equations with lower order terms
Trombetti, C.
Bollettino dell'Unione Matematica Italiana, Tome 8-A (2005), p. 629-637 / Harvested from Biblioteca Digitale Italiana di Matematica

We prove some comparison results for Monge-Ampère type equations in dimension two. We consider also the case of eigenfunctions and we prove a kind of reverse inequalities.

Si dimostrano risultati di confronto per soluzioni di equazioni tipo Monge-Ampère in dimensione due, considerando anche il caso delle autofunzioni.

Publié le : 2005-10-01
@article{BUMI_2005_8_8B_3_629_0,
     author = {C. Trombetti},
     title = {On a class of Monge-Amp\`ere type equations with lower order terms},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {8-A},
     year = {2005},
     pages = {629-637},
     zbl = {1117.35027},
     mrnumber = {2182420},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2005_8_8B_3_629_0}
}
Trombetti, C. On a class of Monge-Ampère type equations with lower order terms. Bollettino dell'Unione Matematica Italiana, Tome 8-A (2005) pp. 629-637. http://gdmltest.u-ga.fr/item/BUMI_2005_8_8B_3_629_0/

[1] Alvino, A. - Ferone, V. - Trombetti, G., On properties of some nonlinear eigenvalues, SIAM J. Math. Anal., 29, no. 2 (1998), 437-451. | MR 1616519 | Zbl 0908.35094

[2] Bakelman, I. J., Convex Analysis and nonlinear geometric elliptic equations, Springer-Verlag, 1994. | MR 1305147 | Zbl 0815.35001

[3] Belloni, M. - Kawohl, B., A direct uniqueness proof for equations involving the p-Laplace operator, Manuscripta Math., 109 (2) (2002), 229-231. | MR 1935031 | Zbl 1100.35032

[4] Brandolini, B. - Trombetti, C., A symmetrization result for Monge-Ampère type equations, Preprint 2003. | MR 2308477 | Zbl 1189.35141

[5] Brandolini, B. - Trombetti, C., Comparison results for Hessian equations via symmetrization, in preparation. | Zbl 1215.35067

[6] Boccardo, L. - Drabek, P. - Giachetti, D. - Kucera, M., Generalization of Fredholm alternative for nonlinear differential operators, Nonlinear Analysis. T.M.A., 10 (10) (1986), 1083-1103. | MR 857742 | Zbl 0623.34031

[7] Brezis, H. - Oswald, L., Remarks on sublinear elliptic equations, Nonlinear Analysis T.M.A., 10 (1) (1986), 55-64. | MR 820658 | Zbl 0593.35045

[8] Caffarelli, L. A. - Niremberg, L. - Spruck, J., The Dirichlet problem for nonlinear second-order elliptic equations, Comm. Pure Appl. Math., 37 (1984), 369-402. | MR 739925 | Zbl 0598.35047

[9] Cheng, S. Y. - Yau, S. T., On the regularity of Monge-Ampère equation det2uxixj=Fx,u, Comm. Pure Appl. Math., 30 (1977), 41-68. | MR 437805 | Zbl 0347.35019

[10] Chong, K. M. - Rice, N. M., Equimeasurable rearrangements of functions, Queen's paper in pure and applied mathematics, n. 28. | Zbl 0275.46024

[11] Diaz, J. I. - Saa, J. E., Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C. R. Acad. Sci. Paris, 305, Série I (1987), 521-524. | MR 916325 | Zbl 0656.35039

[12] Ferone, V. - Messano, B., A symmetrization result for nonlinear elliptic equations, to appear on Revista Mat. Complutense. | MR 2083955 | Zbl 1097.35049

[13] Gilbarg, D. - Trudinger, N. S., Elliptic partial differential equations of second order, Springer-Verlag, 1983. | MR 737190 | Zbl 0562.35001

[14] Kawohl, B., Rearrangements and convexity of the level sets in PDE, Springer-Verlag, Berlin (1985). | MR 810619 | Zbl 0593.35002

[15] Kutev, N. D., Nontrivial solutions for the equations of Monge-Ampere type, J. Math. Anal. Appl., 132 (1988), 424-433. | MR 943516 | Zbl 0658.35035

[16] Lindqvist, P., On the equation divup-2u+λup-2u=0, Proceedings Amer. Math. Soc., 109 (1990), 157-164. | MR 1007505 | Zbl 0714.35029

[17] Lions, P. L., Sur les equations de Monge-Ampère, Arch. Rat. Mech. Anal., 89 (1985), 93-122. | MR 786541 | Zbl 0579.35027

[18] Lions, P. L., Two remarks on Monge-Ampère equations, Ann. Mat. Pura Appl., 142 (1985), 263-275. | MR 839040 | Zbl 0594.35023

[19] Talenti, G., Some estimates of solutions to Monge-Ampère type equations in dimension two, Ann. scula Norm. sup. Pisa, (2) VII (1981), 183-230. | MR 623935 | Zbl 0467.35044

[20] Talenti, G., Linear elliptic p.d.e.'s: level sets, rearrangements and a priori estimates of solutions, Boll. UMI, (6) 4-B (1985), 917-949. | MR 831299 | Zbl 0602.35025

[21] Trudinger, N. S., On new isoperimetric inequalities and symmetrization, J. Reine Angew. Math., 488 (1997), 203-220. | MR 1465371 | Zbl 0883.52006

[22] Tso, K., On symmetrization and hessian equations, J. Anal. Math., 52 (1989), 94-106. | MR 981497 | Zbl 0675.35040

[23] Tso, K., On a real Monge-Ampère functional, Invent. Math., 101 (1990), 425-448. | MR 1062970 | Zbl 0724.35040

[24] Wang, X. J., Existence of multiple solutions to the equations of Monge-Ampère type, J. Diff. Eq., 100 (1992), 95-118. | MR 1187864 | Zbl 0770.35019

[25] Wang, X. J., A class of fully nonlinear equations and related functionals, Indiana Univ. Math. J., 43 (1994), 25-54. | MR 1275451 | Zbl 0805.35036