Si studiano soluzioni positive dellequazione in , dove , ed è un piccolo parametro positivo. Si impongono in genere condizioni al bordo di Neumann. Quando tende a zero, dimostriamo esistenza di soluzioni che si concentrano su curve o varietà.
We study positive solutions of the equation in , where , and is a positive small parameter. Usually we put Neumann boundary conditions. When goes to zero, we prove the existence of solutions which concentrate on curves or varietis.
@article{BUMI_2005_8_8B_3_615_0, author = {Andrea Malchiodi}, title = {Costruzione di spike-layers multidimensionali}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {8-A}, year = {2005}, pages = {615-628}, zbl = {1182.35121}, mrnumber = {2182419}, language = {it}, url = {http://dml.mathdoc.fr/item/BUMI_2005_8_8B_3_615_0} }
Malchiodi, Andrea. Costruzione di spike-layers multidimensionali. Bollettino dell'Unione Matematica Italiana, Tome 8-A (2005) pp. 615-628. http://gdmltest.u-ga.fr/item/BUMI_2005_8_8B_3_615_0/
[1] Singularly Perturbed Elliptic Equation with Symmetry: Existence of Solutions Concentrating on Spheres, Part I, Comm. Math. Phys., 235 (2003), 427-466. | MR 1974510 | Zbl 1072.35019
- - ,[2] Singularly Perturbed Elliptic Equations with Symmetry: Existence of Solutions Concentrating on Spheres, Part II, Indiana Univ. Math. J., 53, no. 2 (2004), 297-329. | MR 2056434 | Zbl 1081.35008
- - ,[3] Instability results for reaction diffusion equations with Neumann boundary conditions, J. Diff. Eq. 27, no. 2 (1978), 266-273. | MR 480282 | Zbl 0338.35055
- ,[4] Nonexistence of single blow-up solutions for a nonlinear Schrödinger equation involving critical Sobolev exponent, Z. Angew. Math. Phys., 55, no. 2 (2004), 201-215. | MR 2047283 | Zbl 1120.35308
- ,[5] Stable and finite Morse index solutions on Rn or on bounded domains with small diffusion. II, Indiana Univ. Math. J., 53, no. 1 (2004), 97-108. | MR 2048185 | Zbl 1183.35125
,[6] On a class of solutions with non-vanishing angular momentum for nonlinear Schrödinger equations, Diff. Int. Eq., 16, no. 3 (2003), 349-384. | MR 1947957 | Zbl 1031.35130
,[7] Semi-classical states for nonlinear Schrödinger equations, J. Funct. Anal., 149, no. 1 (1997), 245-265. | MR 1471107 | Zbl 0887.35058
- ,[8] A theory of biological pattern formation, Kybernetik (Berlin), 12 (1972), 30-39.
- ,[9] On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Canad. J. Math., 52, no. 3 (2000), 522-538. | MR 1758231 | Zbl 0949.35052
- ,[10] 132, Springer-Verlag, Berlin-New York, 1976. | MR 407617 | Zbl 0342.47009
, Perturbation theory for linear operators. Second edition. Grundlehren der Mathematischen Wissenschaften, Band[11] The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure Appl. Math., 51 (1998), 1445-1490. | MR 1639159 | Zbl 0933.35083
- ,[12] Large amplitude stationary solutions to a chemotaxis systems, J. Diff. Eq., 72 (1988), 1-27. | MR 929196 | Zbl 0676.35030
- - ,[13] Boundary concentration phenomena for a singularly perturbed elliptic problem, Comm. Pure Appl. Math., 15 (2002), 1507- 1568. | MR 1923818 | Zbl 1124.35305
- ,[14] Multidimensional boundary layers for a singularly perturbed Neumann problem, Duke Math. J., 124, no. 1 (2004), 105-143. | MR 2072213 | Zbl 1065.35037
- ,[15] Multiple Clustered Layer Solutions for Semilinear Neumann Problems on A Ball, Ann. I.H.P. Analyse non lineaire, to appear. | Zbl 1207.35141
- ,[16] Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. Res. Inst. Math. Sci., 15, no. 2 (1979), 401-454. | MR 555661 | Zbl 0445.35063
,[17] Diffusion, cross-diffusion, and their spike-layer steady states, Notices Amer. Math. Soc., 45, no. 1 (1998), 9-18. | MR 1490535 | Zbl 0917.35047
,[18] On the shape of least-energy solution to a semilinear Neumann problem, Comm. Pure Appl. Math., 41 (1991), 819-851. | MR 1115095 | Zbl 0754.35042
- ,[19] Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J., 70 (1993), 247-281. | MR 1219814 | Zbl 0796.35056
- ,[20] Semilinear Neumann boundary value problems on a rectangle, Trans. Amer. Math. Soc., 354, no. 8 (2002), 3117-3154. | MR 1897394 | Zbl 0992.35031
,[21] The chemical basis of morphogenesis, Phil. Trans. Royal Soc. London, Series B, Biological Sciences, 237 (1952), 37-72.
,