Costruzione di spike-layers multidimensionali
Malchiodi, Andrea
Bollettino dell'Unione Matematica Italiana, Tome 8-A (2005), p. 615-628 / Harvested from Biblioteca Digitale Italiana di Matematica

Si studiano soluzioni positive dell’equazione -ϵ2Δu+u=up in Ω, dove ΩRn , p>1 ed ϵ è un piccolo parametro positivo. Si impongono in genere condizioni al bordo di Neumann. Quando ϵ tende a zero, dimostriamo esistenza di soluzioni che si concentrano su curve o varietà.

We study positive solutions of the equation -ϵ2Δu+u=up in Ω, where ΩRn , p>1 and ϵ is a positive small parameter. Usually we put Neumann boundary conditions. When ϵ goes to zero, we prove the existence of solutions which concentrate on curves or varietis.

Publié le : 2005-10-01
@article{BUMI_2005_8_8B_3_615_0,
     author = {Andrea Malchiodi},
     title = {Costruzione di spike-layers multidimensionali},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {8-A},
     year = {2005},
     pages = {615-628},
     zbl = {1182.35121},
     mrnumber = {2182419},
     language = {it},
     url = {http://dml.mathdoc.fr/item/BUMI_2005_8_8B_3_615_0}
}
Malchiodi, Andrea. Costruzione di spike-layers multidimensionali. Bollettino dell'Unione Matematica Italiana, Tome 8-A (2005) pp. 615-628. http://gdmltest.u-ga.fr/item/BUMI_2005_8_8B_3_615_0/

[1] Ambrosetti, A. - Malchiodi, A. - Ni, W.-M., Singularly Perturbed Elliptic Equation with Symmetry: Existence of Solutions Concentrating on Spheres, Part I, Comm. Math. Phys., 235 (2003), 427-466. | MR 1974510 | Zbl 1072.35019

[2] Ambrosetti, A. - Malchiodi, A. - Ni, W.-M., Singularly Perturbed Elliptic Equations with Symmetry: Existence of Solutions Concentrating on Spheres, Part II, Indiana Univ. Math. J., 53, no. 2 (2004), 297-329. | MR 2056434 | Zbl 1081.35008

[3] Casten, R. G. - Holland, C. J., Instability results for reaction diffusion equations with Neumann boundary conditions, J. Diff. Eq. 27, no. 2 (1978), 266-273. | MR 480282 | Zbl 0338.35055

[4] Cingolani, S. - Pistoia, A., Nonexistence of single blow-up solutions for a nonlinear Schrödinger equation involving critical Sobolev exponent, Z. Angew. Math. Phys., 55, no. 2 (2004), 201-215. | MR 2047283 | Zbl 1120.35308

[5] Dancer, E. N., Stable and finite Morse index solutions on Rn or on bounded domains with small diffusion. II, Indiana Univ. Math. J., 53, no. 1 (2004), 97-108. | MR 2048185 | Zbl 1183.35125

[6] D'Aprile, T., On a class of solutions with non-vanishing angular momentum for nonlinear Schrödinger equations, Diff. Int. Eq., 16, no. 3 (2003), 349-384. | MR 1947957 | Zbl 1031.35130

[7] Del Pino, M. - Felmer, P., Semi-classical states for nonlinear Schrödinger equations, J. Funct. Anal., 149, no. 1 (1997), 245-265. | MR 1471107 | Zbl 0887.35058

[8] Gierer, A. - Meinhardt, H., A theory of biological pattern formation, Kybernetik (Berlin), 12 (1972), 30-39.

[9] Gui, C. - Wei, J., On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Canad. J. Math., 52, no. 3 (2000), 522-538. | MR 1758231 | Zbl 0949.35052

[10] Kato, T., Perturbation theory for linear operators. Second edition. Grundlehren der Mathematischen Wissenschaften, Band 132, Springer-Verlag, Berlin-New York, 1976. | MR 407617 | Zbl 0342.47009

[11] Li, Y. Y. - Nirenberg, L., The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure Appl. Math., 51 (1998), 1445-1490. | MR 1639159 | Zbl 0933.35083

[12] Lin, C. S. - Ni, W.-M. - Takagi, I., Large amplitude stationary solutions to a chemotaxis systems, J. Diff. Eq., 72 (1988), 1-27. | MR 929196 | Zbl 0676.35030

[13] Malchiodi, A. - Montenegro, M., Boundary concentration phenomena for a singularly perturbed elliptic problem, Comm. Pure Appl. Math., 15 (2002), 1507- 1568. | MR 1923818 | Zbl 1124.35305

[14] Malchiodi, A. - Montenegro, M., Multidimensional boundary layers for a singularly perturbed Neumann problem, Duke Math. J., 124, no. 1 (2004), 105-143. | MR 2072213 | Zbl 1065.35037

[15] Ni, W.-M.Malchiodi, - Wei, J., Multiple Clustered Layer Solutions for Semilinear Neumann Problems on A Ball, Ann. I.H.P. Analyse non lineaire, to appear. | Zbl 1207.35141

[16] Matano, H., Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. Res. Inst. Math. Sci., 15, no. 2 (1979), 401-454. | MR 555661 | Zbl 0445.35063

[17] Ni, W. M., Diffusion, cross-diffusion, and their spike-layer steady states, Notices Amer. Math. Soc., 45, no. 1 (1998), 9-18. | MR 1490535 | Zbl 0917.35047

[18] Ni, W. M. - Takagi, I., On the shape of least-energy solution to a semilinear Neumann problem, Comm. Pure Appl. Math., 41 (1991), 819-851. | MR 1115095 | Zbl 0754.35042

[19] Ni, W. M. - Takagi, I., Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J., 70 (1993), 247-281. | MR 1219814 | Zbl 0796.35056

[20] Shi, J., Semilinear Neumann boundary value problems on a rectangle, Trans. Amer. Math. Soc., 354, no. 8 (2002), 3117-3154. | MR 1897394 | Zbl 0992.35031

[21] Turing, A. M., The chemical basis of morphogenesis, Phil. Trans. Royal Soc. London, Series B, Biological Sciences, 237 (1952), 37-72.