Symmetries and Kähler-Einstein metrics
Arezzo, Claudio ; Ghigi, Alessandro
Bollettino dell'Unione Matematica Italiana, Tome 8-A (2005), p. 605-613 / Harvested from Biblioteca Digitale Italiana di Matematica

We consider Fano manifolds $M$ that admit a collection of finite automorphism groups $G_1, \ldots, G_k$ , such that the quotients $M/G_i$ are smooth Fano manifolds possessing a Kähler-Einstein metric. Under some numerical and smoothness assumptions on the ramification divisors, we prove that $M$ admits a Kähler-Einstein metric too.

Si considerano varietà di Fano $M$ che ammettono un certo numero di rivestimenti di Galois $M\rightarrow M_i$, su delle varietà di Fano lisce $M_i$ che ammettono una metrica di Kähler-Einstein. Sotto alcune ipotesi numeriche sui divisori di ramificazione si dimostra che allora anche su $M$ esiste una metrica di Kähler-Einstein.

Publié le : 2005-10-01
@article{BUMI_2005_8_8B_3_605_0,
     author = {Claudio Arezzo and Alessandro Ghigi},
     title = {Symmetries and K\"ahler-Einstein metrics},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {8-A},
     year = {2005},
     pages = {605-613},
     zbl = {1178.53040},
     mrnumber = {2182418},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2005_8_8B_3_605_0}
}
Arezzo, Claudio; Ghigi, Alessandro. Symmetries and Kähler-Einstein metrics. Bollettino dell'Unione Matematica Italiana, Tome 8-A (2005) pp. 605-613. http://gdmltest.u-ga.fr/item/BUMI_2005_8_8B_3_605_0/

[1] Arezzo, C. - Ghigi, A. - Pirola, G. P., Symmetries, Quotients and Kähler-Einstein metrics, 2003, preprint. | MR 2212883 | Zbl 1089.32013

[2] Arezzo, C. - Loi, A., Moment maps, scalar curvature and quantization of Kähler manifolds, Comm. Math. Phys., to appear. | MR 2053943 | Zbl 1062.32021

[3] Demailly, Jean-Pierre - Kollár, János, Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds, Ann. Sci. École Norm. Sup. (4), 34(4) (2001), 525-556. | MR 1852009 | Zbl 0994.32021

[4] Donaldson, S. K., Scalar curvature and projective embeddings. I, J. Differential Geom., 59(3) (2001), 479-522. | MR 1916953 | Zbl 1052.32017

[5] Donaldson, S. K., Scalar curvature and stability of toric varieties, J. Differential Geom., 62(2) (2002), 289-349. | MR 1988506 | Zbl 1074.53059

[6] Iskovskikh, V. A. - Prokhorov, Yu. G., Fano varieties. In Algebraic geometry, V, volume 47 of Encyclopaedia Math. Sci., pages 1-247, Springer, Berlin, 1999. | MR 1668579 | Zbl 0912.14013

[7] Kollár, János, Singularities of pairs. In Algebraic geometry–Santa Cruz 1995, volume 62 of Proc. Sympos. Pure Math., pages 221-287. Amer. Math. Soc., Providence, RI, 1997. | MR 1492525 | Zbl 0905.14002

[8] Nadel, Alan Michael, Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature, Ann. of Math. (2), 132(3) (1990), 549-596. | MR 1078269 | Zbl 0731.53063

[9] Paul, S. T. - Tian, G., Analysis of geometric stability, preprint. | MR 2078110 | Zbl 1076.32018

[10] Richberg, Rolf, Stetige streng pseudokonvexe Funktionen, Math. Ann., 175 (1968), 257-286. | MR 222334 | Zbl 0153.15401

[11] Tian, G., On Calabi’s conjecture for complex surfaces with positive first Chern class, Invent. Math., 101 (1) (1990), 101-172. | MR 1055713 | Zbl 0716.32019

[12] Tian, Gang, Kähler-Einstein metrics with positive scalar curvature, Invent. Math., 130(1) (1997), 1-37. | MR 1471884 | Zbl 0892.53027

[13] Gang Tian, , Canonical metrics in Kähler geometry, Birkhäuser Verlag, Basel, 2000. Notes taken by Meike Akveld. | MR 1787650 | Zbl 0978.53002

[14] Xujia Wang, - Xiaohua Zhu, , Kähler-Ricci solitons on toric manifolds with positive first Chern class, 2002, preprint. | MR 2084775 | Zbl 1086.53067