Recent developments in wavelet methods for the solution of PDE's
Bertoluzza, Silvia
Bollettino dell'Unione Matematica Italiana, Tome 8-A (2005), p. 569-590 / Harvested from Biblioteca Digitale Italiana di Matematica

After reviewing some of the properties of wavelet bases, and in particular the property of characterisation of function spaces via wavelet coefficients, we describe two new approaches to, respectively, stabilisation of numerically unstable PDE's and to non linear (adaptive) solution of PDE's, which are made possible by these properties.

Dopo aver ricordato alcune delle proprietà delle basi di wavelets, ed in particolare la proprietà di caratterizzazione di spazi funzionali tramite coefficienti wavelet, descriviamo due nuovi approcci rispettivamente alla stabilizzazione di problemi numericamente instabili ed alla soluzione nonlineare (adattativa) di equazioni differenziali alle derivate parziali, che sono resi possibili da dette proprietà.

Publié le : 2005-10-01
@article{BUMI_2005_8_8B_3_569_0,
     author = {Silvia Bertoluzza},
     title = {Recent developments in wavelet methods for the solution of PDE's},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {8-A},
     year = {2005},
     pages = {569-590},
     mrnumber = {2182416},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2005_8_8B_3_569_0}
}
Bertoluzza, Silvia. Recent developments in wavelet methods for the solution of PDE's. Bollettino dell'Unione Matematica Italiana, Tome 8-A (2005) pp. 569-590. http://gdmltest.u-ga.fr/item/BUMI_2005_8_8B_3_569_0/

[1] Hall, N.Jawerth, B.Andersson, L. - Peters, G., Wavelets on closed subsets of the real line, Technical report, 1993. | MR 1244602 | Zbl 0808.42019

[2] Baiocchi, C. - Brezzi, F., Stabilization of unstable methods, in P.E.Ricci, editor, Problemi attuali dell’Analisi e della Fisica Matematica, Università «La Sapienza», Roma, 1993. | MR 1249088

[3] Bertoluzza, S., Wavelets for the numerical solution of the stokes equation, in Proc. of IMACS ’97 World Conference, Berlin, August 24-29, 1997, 1997, to appear.

[4] Bertoluzza, S., Stabilization by multiscale decomposition, Appl. Math. Lett., 11(6) (1998), 129-134. | MR 1647121 | Zbl 0940.65060

[5] Bertoluzza, S., Analysis of a stabilized three fields domain decomposition method, Technical Report 1175, I.A.N.-C.N.R., 2000, Numer. Math., to appear. | MR 1961881 | Zbl 1028.65132

[6] Bertoluzza, S., Wavelet stabilization of the Lagrange multiplier method, Numer. Math., 86 (2000), 1-28. | MR 1774008 | Zbl 0966.65075

[7] Bertoluzza, S. - Canuto, C. - Tabacco, A., Stable discretization of convection-diffusion problems via computable negative order inner products, SINUM, 38 (2000), 1034-1055. | MR 1781214 | Zbl 0974.65104

[8] Bertoluzza, S. - Kunoth, A., Wavelet stabilization and preconditioning for domain decomposition, I.M.A. Jour. Numer. Anal., 20 (2000), 533-559. | MR 1795297 | Zbl 0966.65076

[9] Bertoluzza, S. - Verani, M., Convergence of a non-linear wavelet algorithm for the solution of PDE’s, Appl. Math. Lett., to appear. | MR 1938199 | Zbl 1020.65077

[10] Bertoluzza, S. - Mazet, S. - Verani, M., A nonlinear richardson algorithm for the solution of elliptic PDE’s, M3AS, 2003. | MR 1960998 | Zbl 1051.65112

[11] Bramble, J. H. - Lazarov, R. D. - Pasciak, J. E., A least square approach based on a discrete minus one product for first order systems, Technical Report BNL-60624, Brookhaven National Laboratory, 1994.

[12] Brezzi, F. - Fortin, M., Mixed and Hybrid Finite Element Methods, Springer, 1991. | MR 1115205 | Zbl 0788.73002

[13] Canuto, C. - Tabacco, A. - Urban, K., The wavelet element method. II. Realization and additional features in 2D and 3D, Appl. Comput. Harmon. Anal., 8, 2000. | MR 1743533 | Zbl 0951.42016

[14] Cohen, A. - Dahmen, W. - De Vore, R., Multiscale decomposition on bounded domains, preprint. | Zbl 0945.42018

[15] Cohen, A. - Dahmen, W. - De Vore, R., Adaptive wavelet methods for elliption operator equations – convergence rates, Technical report, IGPM - RWTH-Aachen, 1998, to appear in Math. Comp. | MR 1803124 | Zbl 0980.65130

[16] Cohen, A. - Daubechies, I. - Vial, P., Wavelets on the interval and fast wavelet transforms, ACHA, 1 (1993), 54-81. | MR 1256527 | Zbl 0795.42018

[17] Cohen, A. - Masson, R., Wavelet adaptive method for second order elliptic problems: boundary conditions and domain decomposition, Numer. Math., 86(2) (2000), 193-238. | MR 1777487 | Zbl 0961.65106

[18] Dahlke, S. - Hochmut, R. - Urban, K., Adaptive wavelet methods for saddle point problems, Technical Report 1126, IAN-CNR, 1999. | MR 1837765 | Zbl 0965.65074

[19] Dahmen, W., Stability of multiscale transformations, Journal of Fourier Analysis and Applications, 2(4) (1996), 341-361. | MR 1395769 | Zbl 0919.46006

[20] Dahmen, W. - Kunoth, A. - Schneider, R., Wavelet least square methods for boundary value problems, Siam J. Numer. Anal., 2002. | MR 1897946 | Zbl 1013.65124

[21] Dahmen, W. - Michelli, C. A., Using the refinement equation for evaluating integrals of wavelets, SIAM J. Numer. Anal., 30 (1993), 507-537. | MR 1211402 | Zbl 0773.65006

[22] Dahmen, W. - Schneider, R., Composite wavelet bases for operator equations, Math. Comp., 68(228) (1999), 1533-1567. | MR 1648379 | Zbl 0932.65148

[23] Daubechies, I., Ten lectures on wavelets, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. | MR 1162107 | Zbl 0776.42018

[24] Devore, R. A., Nonlinear approximation, Acta Numerica, 1998. | MR 1689432 | Zbl 0931.65007

[25] Devore, R. A. - Jawerth, B. - Popov, V., Compression of wavelet decomposition, Amer. J. Math, 114, 1992. | MR 1175690 | Zbl 0764.41024

[26] Maday, Y. - Perrier, V. - Ravel, J. C., Adaptivité dynamique sur bases d’ondelettes pour l’approximation d’équations aux derivées partielles, C. R. Acad. Sci Paris, 312 (Série I), (1991), 405-410. | MR 1096621 | Zbl 0709.65099

[27] Meyer, Y., Wavelets and operators, in Ingriddaubechies, editor, Different Perspectives on Wavelets, volume 47 of Proceedings of Symposia in Applied Mathematics, pages 35-58, American Math. Soc., Providence, RI, 1993. From an American Math. Soc. short course, Jan. 11-12, 1993, San Antonio, TX. | MR 1267996 | Zbl 0810.42015

[28] Triebel, H., Interpolation Theory, Function Spaces, Differential Operators, North Holland, 1978. | MR 503903 | Zbl 0387.46032