La semiconcavità è una nozione che generalizza quella di concavità conservandone la maggior parte delle proprietà ma permettendo di ampliarne le applicazioni. Questa è una rassegna dei punti più salienti della teoria delle funzioni semiconcave, con particolare riguardo allo studio dei loro insiemi singolari. Come applicazione, si discuterà una formula di rappresentazione per la soluzione di un modello dinamico per la materia granulare.
Semiconcavity is a natural generalization of concavity that retains most of the good properties known in convex analysis, but arises in a wider range of applications. This is a survey of the main properties of semiconcave functions which emphasizes the study of singularities. An application to a dynamic model for granular matter will be discussed.
@article{BUMI_2005_8_8B_3_549_0, author = {Piermarco Cannarsa}, title = {Funzioni semiconcave, singolarit\`a e pile di sabbia}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {8-A}, year = {2005}, pages = {549-567}, zbl = {1182.49011}, mrnumber = {2182415}, language = {it}, url = {http://dml.mathdoc.fr/item/BUMI_2005_8_8B_3_549_0} }
Cannarsa, Piermarco. Funzioni semiconcave, singolarità e pile di sabbia. Bollettino dell'Unione Matematica Italiana, Tome 8-A (2005) pp. 549-567. http://gdmltest.u-ga.fr/item/BUMI_2005_8_8B_3_549_0/
[1] Structural properties of singularities of semiconcave functions, Annali Scuola Norm. Sup. Pisa Sci. Fis. Mat., 28 (1999), 719-740. | MR 1760538 | Zbl 0957.26002
- ,[2] Propagation of singularities for solutions of nonlinear first order partial differential equations, Arch. Ration. Mech. Anal., 162 (2002), 1-23. | MR 1892229 | Zbl 1043.35052
- ,[3] On the singularities of convex functions, Manuscripta Math., 76 (1992), 421-435. | MR 1185029 | Zbl 0784.49011
- - ,[4] Optimal transport maps in Monge-Kantorovich problem, in Proceedings of the International Congress of Mathematicians, vol. III (Beijing 2002), Higher Ed. Press, Beijing, 2002, 131-140. | MR 1957525 | Zbl 1005.49030
,[5] The porous medium equation, in Some problems on nonlinear diffusion ( and , Eds.), Lect. Notes Math. 1224, Springer, 1986, 1-46. | MR 877986 | Zbl 0626.76097
,[6] | MR 1484411 | Zbl 0890.49011
- , Optimal control and viscosity solutions of Hamilton-Jacobi equations, Birkhäuser, Boston, 1997.[7] (1991) Limits as of and related extremal problems, Some topics in nonlinear PDEs (Turin, 1989). Rend. Sem. Mat. Univ. Politec. Torino, 1989, 15-68. | MR 1155453
- - ,[8] Characterization of optimal shapes and masses through Monge-Kantorovich equation, J. Eur. Math. Soc., 3, No. 2 (2001), 139-168. | MR 1831873 | Zbl 0982.49025
- ,[9] Surface flows of granular mixtures, I. General principles and minimal model, J. Phys. I France, 6 (1996), 1295-1304.
- ,[10] Representation of equilibrium solutions to the table problem for growing sandpile, J. Eur. Math. Soc., 6 (2004), 1-30. | MR 2094399 | Zbl 1084.35015
- ,[11] A boundary value problem for a PDE model in mass transfer theory: representation of solutions and applications, pre-print. | Zbl 1089.35076
- - - ,[12] The table problem for granular matter: regularity of solutions, pre-print.
- - ,[13] | MR 2041617 | Zbl 1095.49003
- , Semiconcave functions, Hamilton-Jacobi equations and optimal control, Birkhäuser, Boston, 2004.[14] Mathematical theory of medial axis transform, Pac. J. Math., 181 (1997), 57-88. | MR 1491036 | Zbl 0885.53004
- - ,[15] | MR 709590 | Zbl 0582.49001
, Optimization and nonsmooth analysis, Wiley, New York, 1983.[16] The continuous dependence of generalized solutions of non-linear partial differential equations upon initial data, Comm. Pure Appl. Math., 14 (1961), 267-284. | MR 139848 | Zbl 0117.31102
,[17] Some remarks on the measurability of certain sets, Bull. Amer. Math. Soc., 51 (1945), 728-731. | MR 13776 | Zbl 0063.01269
,[18] | Zbl 1194.35001
, Partial Differential Equations, A.M.S., Providence, 1998.[19] Fast/slow diffusion and collapsing sandpiles, J. Differential Equations, 137, no. 1 (1997), 166-209. | MR 1451539 | Zbl 0879.35019
- - ,[20] Differential equations methods for the Monge-Kantorovich mass transfer problem, Mem. Amer. Math. Soc., 137, no. 653, 1999. | MR 1464149 | Zbl 0920.49004
- ,[21] The Cauchy problem for a nonlinear first order partial differential equation, J. Diff. Eq., 5 (1969), 515-530. | MR 235269 | Zbl 0172.13901
,[22] A max-plus based algorithm for an HJB equation of nonlinear filtering, SIAM J. Control Optim., 38 (2000), 683-710. | MR 1741434 | Zbl 0949.35039
- ,[23] | MR 1199811 | Zbl 1105.60005
- , Controlled Markov processes and viscosity solutions, Springer Verlag, Berlin, 1993.[24] Tubular neighborhoods in Euclidean spaces, Duke Math. J., 52 (1985), 1025-1046. | MR 816398 | Zbl 0592.52002
,[25] Dynamical models for granular matter, Granular Matter, 2 (1999), 9-18.
- ,[26] The Lipschitz continuity of the distance function to the cut locus, Trans. Am. Math. Soc., 353, No. 1 (2001), 21-40. | MR 1695025 | Zbl 0971.53031
- ,[27] Behaviour in the limit, as , of minimizers of functionals involving p-Dirichlet integrals, SIAM J. Math. Anal., 27, no. 2 (1996), 341-360. | MR 1377478 | Zbl 0853.35028
,[28] The Cauchy problem in the large for certain nonlinear first order differential equations, Soviet. Math. Dokl., 1 (1960), 474-477. | MR 121575 | Zbl 0128.32303
,[29] The Cauchy problem in the large for nonlinear equations and for certain quasilinear systems of the first order with several variables, Soviet. Math. Dokl., 5 (1964), 493-496. | Zbl 0138.34702
,[30] Generalized solutions of the HamiltonJacobi equations of the eikonal type I, Math. USSR Sb., 27 (1975), 406-445. | Zbl 0369.35012
,[31] | MR 1312364 | Zbl 0817.49001
- Optimal control theory for infinite-dimensional systems, Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, 1995.[32] | MR 667669 | Zbl 0497.35001
, Generalized solutions of Hamilton-Jacobi equations, Pitman, Boston, 1982.[33] Sur quelques propriétés caractéristiques des ensembles convexes, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 21 (1935), 562-567. | Zbl 0011.41105
,[34] The distance function to the boundary, Finsler geometry and the singular set of viscosity solutions of some Hamilton-Jacobi equations, pre-print. | Zbl 1062.49021
- ,[35] Variational model of sandpile growth, European J. Appl. Math., 7, no. 3 (1996), 225-235. | MR 1401168 | Zbl 0913.73079
,[36] Existence of Lipschitz and semiconcave control-Lyapunov functions, SIAM J. Control Optim., 39 (2000), 1043-1064. | MR 1814266 | Zbl 0982.93068
,[37] Semiconcave control-Lyapunov functions and stabilizing feedbacks, SIAM J. Control Optim., 41 (2002), 659-681. | MR 1939865 | Zbl 1034.93053
,[38] Favorable classes of Lipschitz continuous functions in subgradient optimization, in Progress in Nondifferential Optimization ( , Ed.), IIASA Collaborative Proceedings Series, Laxenburg, 125 (1982). | MR 704977 | Zbl 0511.26009
,[39] On the points of multiplicity of monotone operators, Comment. Math. Univ. Carolin., 19 (1978), 179-189. | MR 493541 | Zbl 0404.47025
,[40] On the differentiation of convex functions in finite and infinite dimensional spaces, Czechoslovak Math. J., 29 (1979), 340-348. | MR 536060 | Zbl 0429.46007
,