Lp-boundedness for pseudodifferential operators with non-smooth symbols and applications
Garello, Gianluca ; Morando, Alessandro
Bollettino dell'Unione Matematica Italiana, Tome 8-A (2005), p. 461-503 / Harvested from Biblioteca Digitale Italiana di Matematica

Starting from a general formulation of the characterization by dyadic crowns of Sobolev spaces, the authors give a result of Lp continuity for pseudodifferential operators whose symbol a(x,ξ) is non smooth with respect to x and whose derivatives with respect to ξ have a decay of order ρ with 0<ρ1. The algebra property for some classes of weighted Sobolev spaces is proved and an application to multi - quasi - elliptic semilinear equations is given.

Utilizzando una formulazione generalizzata della caratterizzazione per corone diadiche degli spazi di Sobolev, nel presente lavoro si dimostra la continuità Lp per operatori pseudodifferenziali il cui simbolo a(x,ξ) non è infinitamente differenziabile rispetto alla variabile x, mentre le sue derivate rispetto alla variabile ξ decadono con ordine ρ, con 0<ρ1. Viene poi provata una proprietà di algebra per una classe di spazi di Sobolev pesati, che ben si applica allo studio della regolarità delle soluzioni di equazioni semi lineari multi-quasi-ellittiche.

Publié le : 2005-06-01
@article{BUMI_2005_8_8B_2_461_0,
     author = {Gianluca Garello and Alessandro Morando},
     title = {$L^p$-boundedness for pseudodifferential operators with non-smooth symbols and applications},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {8-A},
     year = {2005},
     pages = {461-503},
     zbl = {1178.35395},
     mrnumber = {2149396},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2005_8_8B_2_461_0}
}
Garello, Gianluca; Morando, Alessandro. $L^p$-boundedness for pseudodifferential operators with non-smooth symbols and applications. Bollettino dell'Unione Matematica Italiana, Tome 8-A (2005) pp. 461-503. http://gdmltest.u-ga.fr/item/BUMI_2005_8_8B_2_461_0/

[1] Beals, M. - Reeds, M. C., Microlocal regularity theorems for non smooth pseudodifferential operators and applications to non linear problems, Trans. Am. Math. Soc., 285 (1984), 159-184. | MR 748836 | Zbl 0562.35093

[2] Boggiatto, P. - Buzano, E. - Rodino, L., Global Hypoellipticity and Spectral Theory, Mathematical Research, Vol. 92, Akademie Verlag, Berlin, New York, 1996. | MR 1435282 | Zbl 0878.35001

[3] Bony, J. M., Calcul simbolique et propagation des singularités pour les équations aux dérivées partielles non lineaires, Ann. Sc. Ec. Norm. Sup., 14 (1981), 161-205. | MR 631751 | Zbl 0495.35024

[4] Bony, J. M. - Chemin, J. Y., Espaces fonctionnels associés au calcul de Weyl-Hörmander, Bull. Soc. Math. France, 122 (1994), 77-118. | MR 1259109 | Zbl 0798.35172

[5] Calderón, A. P., Intermediate spaces and interpolation, the complex method, Studia Math., 24 (1964), 113-190. | MR 167830 | Zbl 0204.13703

[6] Coifman, R. - Meyer, Y., Au delà des opérateurs pseudo-differentiels, Astérisque 57, Soc. Math. France, 1978. | MR 518170 | Zbl 0483.35082

[7] Egorov, Y. V. - Schulze, B. W., Pseudo-differential operators, singularities, applications, Operator Theory: Advances and Applications, 93, Birkhäuser Verlag, Basel, 1997. | MR 1443430 | Zbl 0877.35141

[8] Fefferman, C., Lp bounds for pseudodifferential operators, Israel J. Math., 14 (1973), 413-417. | MR 336453 | Zbl 0259.47045

[9] Garello, G., Generalized Sobolev algebras and regularity for solutions of multiquasi-elliptic semi linear equations, Comm. in Appl. Analysis, 3 (4) (1999), 563-574. | MR 1706710 | Zbl 0933.35204

[10] Garello, G., Pseudodifferential operators with symbols in weighted Sobolev spaces and regularity for non linear partial differential equations, Math. Nachr., 239-240 (2001), 62-79. | MR 1905664 | Zbl 1027.35170

[11] Garello, G. - Morando, A., Lp-bounded pseudodifferential operators and regularity for multi-quasi-elliptic equations, to appear in Integr. equ. oper. theory. | Zbl 1082.35175

[12] Gindikin, S. - Volevich, L. R., The method of Newton’s Polyhedron in the theory of partial differential equations, Coll. Mathematics and its Applications, Kluwer Academic Publishers, 1992. | MR 1256484 | Zbl 0779.35001

[13] Helffer, B., Théorie spectrale pour des opérateurs globalement elliptiques, Soc. Math. de France, Astérisque, 1984. | MR 743094 | Zbl 0541.35002

[14] Hörmander, L., The Weyl calculus of pseudodifferential operators, Comm. Pure Appl. Math., 32 (3) (1979), 359-443. | MR 517939 | Zbl 0388.47032

[15] Hörmander, L., The analysis of linear partial differential operators II. Differential operators with constant coefficients, Grundlehren der Mathematischen Wissenschaften, vol. 257, Springer-Verlag, Berlin, 1983. | MR 705278 | Zbl 0521.35002

[16] Lizorkin, P. I., Lp,Lq-multipliers of Fourier integrals, Dokl. Akad. Nauk SSSR, 152 (1963), 808-811. | MR 154057 | Zbl 0156.12902

[17] Marschall, J., Pseudodifferential operators with non regular symbols of the class Sρ,δm, Comm. in Part. Diff. Eq., 12 (8) (1987), 921-965. | MR 891745 | Zbl 0621.47048

[18] Marschall, J., Pseudo-differential operators with coefficients in Sobolev spaces, Trans. Amer. Math. Soc., 307 (1) (1988), 335-361. | Zbl 0679.35088

[19] Shubin, M. A., Pseudodifferential operators and spectral theory, Springer-Verlag, Berlin, 1987. | MR 883081 | Zbl 0616.47040

[20] Stein, E. M., Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J.1970. | MR 290095 | Zbl 0207.13501

[21] Taylor, M. E., Pseudodifferential Operators, Princeton Univ. Press1981. | MR 618463 | Zbl 0453.47026

[22] Taylor, M. E., Pseudodifferential operators and nonlinear PDE, Birkhäuser, Basel-Boston-Berlin, 1991. | MR 1121019 | Zbl 0746.35062

[23] Triebel, H., Interpolation theory, function spaces, differential operators, VEB, Berlin, 1977. | MR 503903 | Zbl 0387.46033

[24] Triebel, H., Theory of Function Spaces, Birkhäuser Verlag, Basel, Boston, Stuttgart, 1983. | MR 781540 | Zbl 0763.46025

[25] Triebel, H., General Function Spaces, I. Decomposition method, Math. Nachr., 79 (1977), 167-179. | MR 628009 | Zbl 0374.46026

[26] Triebel, H., General Function Spaces, II. Inequalities of Plancherel-Pólya- Nikol'skij type. Lp-spaces of analytic functions; 0<p, J. Approximation Theory, 19 (1977), 154-175. | MR 628147 | Zbl 0344.46062

[27] Triebel, H., General Function Spaces, III. Spaces Bp,qgx and Fp,qgx, 1<p<: basic properties, Anal. Math., 3 (3) (1977), 221-249. | MR 628468 | Zbl 0374.46027

[28] Triebel, H., General Function Spaces, IV. Spaces Bp,qgx and Fp,qgx, 1<p<: special properties, Anal. Math., 3 (4) (1977), 299-315. | MR 628469 | Zbl 0374.46028

[29] Triebel, H., General Function Spaces, V. The spaces Bp,qgx and Fp,qgx the case 0<p<, Math. Nachr., 87 (1979), 129-152. | MR 536420 | Zbl 0414.46025

[30] Wong, M. W., An introduction to pseudo-differential operators, 2nd ed., World Scientific Publishing Co., Inc., River Edge, NJ, 1999. | MR 1698573 | Zbl 0753.35134