Starting from a general formulation of the characterization by dyadic crowns of Sobolev spaces, the authors give a result of continuity for pseudodifferential operators whose symbol a(x,ξ) is non smooth with respect to x and whose derivatives with respect to ξ have a decay of order ρ with . The algebra property for some classes of weighted Sobolev spaces is proved and an application to multi - quasi - elliptic semilinear equations is given.
Utilizzando una formulazione generalizzata della caratterizzazione per corone diadiche degli spazi di Sobolev, nel presente lavoro si dimostra la continuità per operatori pseudodifferenziali il cui simbolo a(x,ξ) non è infinitamente differenziabile rispetto alla variabile x, mentre le sue derivate rispetto alla variabile ξ decadono con ordine ρ, con . Viene poi provata una proprietà di algebra per una classe di spazi di Sobolev pesati, che ben si applica allo studio della regolarità delle soluzioni di equazioni semi lineari multi-quasi-ellittiche.
@article{BUMI_2005_8_8B_2_461_0, author = {Gianluca Garello and Alessandro Morando}, title = {$L^p$-boundedness for pseudodifferential operators with non-smooth symbols and applications}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {8-A}, year = {2005}, pages = {461-503}, zbl = {1178.35395}, mrnumber = {2149396}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2005_8_8B_2_461_0} }
Garello, Gianluca; Morando, Alessandro. $L^p$-boundedness for pseudodifferential operators with non-smooth symbols and applications. Bollettino dell'Unione Matematica Italiana, Tome 8-A (2005) pp. 461-503. http://gdmltest.u-ga.fr/item/BUMI_2005_8_8B_2_461_0/
[1] Microlocal regularity theorems for non smooth pseudodifferential operators and applications to non linear problems, Trans. Am. Math. Soc., 285 (1984), 159-184. | MR 748836 | Zbl 0562.35093
- ,[2] 92, Akademie Verlag, Berlin, New York, 1996. | MR 1435282 | Zbl 0878.35001
- - , Global Hypoellipticity and Spectral Theory, Mathematical Research, Vol.[3] Calcul simbolique et propagation des singularités pour les équations aux dérivées partielles non lineaires, Ann. Sc. Ec. Norm. Sup., 14 (1981), 161-205. | MR 631751 | Zbl 0495.35024
,[4] Espaces fonctionnels associés au calcul de Weyl-Hörmander, Bull. Soc. Math. France, 122 (1994), 77-118. | MR 1259109 | Zbl 0798.35172
- ,[5] Intermediate spaces and interpolation, the complex method, Studia Math., 24 (1964), 113-190. | MR 167830 | Zbl 0204.13703
,[6] 57, Soc. Math. France, 1978. | MR 518170 | Zbl 0483.35082
- , Au delà des opérateurs pseudo-differentiels, Astérisque[7] Pseudo-differential operators, singularities, applications, Operator Theory: Advances and Applications, 93, Birkhäuser Verlag, Basel, 1997. | MR 1443430 | Zbl 0877.35141
- ,[8] bounds for pseudodifferential operators, Israel J. Math., 14 (1973), 413-417. | MR 336453 | Zbl 0259.47045
,[9] Generalized Sobolev algebras and regularity for solutions of multiquasi-elliptic semi linear equations, Comm. in Appl. Analysis, 3 (4) (1999), 563-574. | MR 1706710 | Zbl 0933.35204
,[10] Pseudodifferential operators with symbols in weighted Sobolev spaces and regularity for non linear partial differential equations, Math. Nachr., 239-240 (2001), 62-79. | MR 1905664 | Zbl 1027.35170
,[11] -bounded pseudodifferential operators and regularity for multi-quasi-elliptic equations, to appear in Integr. equ. oper. theory. | Zbl 1082.35175
- ,[12] | MR 1256484 | Zbl 0779.35001
- , The method of Newtons Polyhedron in the theory of partial differential equations, Coll. Mathematics and its Applications, Kluwer Academic Publishers, 1992.[13] | MR 743094 | Zbl 0541.35002
, Théorie spectrale pour des opérateurs globalement elliptiques, Soc. Math. de France, Astérisque, 1984.[14] The Weyl calculus of pseudodifferential operators, Comm. Pure Appl. Math., 32 (3) (1979), 359-443. | MR 517939 | Zbl 0388.47032
,[15] 257, Springer-Verlag, Berlin, 1983. | MR 705278 | Zbl 0521.35002
, The analysis of linear partial differential operators II. Differential operators with constant coefficients, Grundlehren der Mathematischen Wissenschaften, vol.[16] -multipliers of Fourier integrals, Dokl. Akad. Nauk SSSR, 152 (1963), 808-811. | MR 154057 | Zbl 0156.12902
,[17] Pseudodifferential operators with non regular symbols of the class , Comm. in Part. Diff. Eq., 12 (8) (1987), 921-965. | MR 891745 | Zbl 0621.47048
,[18] Pseudo-differential operators with coefficients in Sobolev spaces, Trans. Amer. Math. Soc., 307 (1) (1988), 335-361. | Zbl 0679.35088
,[19] | MR 883081 | Zbl 0616.47040
, Pseudodifferential operators and spectral theory, Springer-Verlag, Berlin, 1987.[20] 30, Princeton University Press, Princeton, N.J.1970. | MR 290095 | Zbl 0207.13501
, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No.[21] | MR 618463 | Zbl 0453.47026
, Pseudodifferential Operators, Princeton Univ. Press1981.[22] | MR 1121019 | Zbl 0746.35062
, Pseudodifferential operators and nonlinear PDE, Birkhäuser, Basel-Boston-Berlin, 1991.[23] | MR 503903 | Zbl 0387.46033
, Interpolation theory, function spaces, differential operators, VEB, Berlin, 1977.[24] | MR 781540 | Zbl 0763.46025
, Theory of Function Spaces, Birkhäuser Verlag, Basel, Boston, Stuttgart, 1983.[25] General Function Spaces, I. Decomposition method, Math. Nachr., 79 (1977), 167-179. | MR 628009 | Zbl 0374.46026
,[26] General Function Spaces, II. Inequalities of Plancherel-Pólya- Nikol'skij type. -spaces of analytic functions; , J. Approximation Theory, 19 (1977), 154-175. | MR 628147 | Zbl 0344.46062
,[27] General Function Spaces, III. Spaces and , : basic properties, Anal. Math., 3 (3) (1977), 221-249. | MR 628468 | Zbl 0374.46027
,[28] General Function Spaces, IV. Spaces and , : special properties, Anal. Math., 3 (4) (1977), 299-315. | MR 628469 | Zbl 0374.46028
,[29] General Function Spaces, V. The spaces and the case , Math. Nachr., 87 (1979), 129-152. | MR 536420 | Zbl 0414.46025
, , An introduction to pseudo-differential operators, 2nd ed., World Scientific Publishing Co., Inc., River Edge, NJ, 1999.