Imitating the approach of canonical induction formulas we derive a formula that expresses every character of the symmetric group as an integer linear combination of Young characters. It is different from the well-known formula that uses the determinantal form.
Imitando l'approccio della formula canonica dell'induzione, otteniamo una formula che esprime ogni carattere del gruppo simmetrico come combinazione lineare intera di caratteri di Young. È diversa dalla formula ben nota che usa la forma del determinante.
@article{BUMI_2005_8_8B_2_453_0, author = {Robert Boltje and Burkhard K\"ulshammer}, title = {Canonical Brauer induction and symmetric groups}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {8-A}, year = {2005}, pages = {453-460}, zbl = {1125.20005}, mrnumber = {2141824}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2005_8_8B_2_453_0} }
Boltje, Robert; Külshammer, Burkhard. Canonical Brauer induction and symmetric groups. Bollettino dell'Unione Matematica Italiana, Tome 8-A (2005) pp. 453-460. http://gdmltest.u-ga.fr/item/BUMI_2005_8_8B_2_453_0/
[B] A general theory of canonical induction formulae, J. Alg., 206 (1998), 293-343. | MR 1637292 | Zbl 0913.20001
,[BB] Cohomological Mackey functors in number theory, Preprint 2001. | MR 2032439 | Zbl 1061.11059
- ,[CR] II, John Wiley & Sons (New York, 1987). | MR 892316 | Zbl 0616.20001
- , Methods of representation theory, Vol. - , The representation theory of the symmetric group, Addison-Wesley (Reading, 1981). - , Incidence algebras, Marcel Dekker (New York, 1997).