Canonical Brauer induction and symmetric groups
Boltje, Robert ; Külshammer, Burkhard
Bollettino dell'Unione Matematica Italiana, Tome 8-A (2005), p. 453-460 / Harvested from Biblioteca Digitale Italiana di Matematica

Imitating the approach of canonical induction formulas we derive a formula that expresses every character of the symmetric group as an integer linear combination of Young characters. It is different from the well-known formula that uses the determinantal form.

Imitando l'approccio della formula canonica dell'induzione, otteniamo una formula che esprime ogni carattere del gruppo simmetrico come combinazione lineare intera di caratteri di Young. È diversa dalla formula ben nota che usa la forma del determinante.

Publié le : 2005-06-01
@article{BUMI_2005_8_8B_2_453_0,
     author = {Robert Boltje and Burkhard K\"ulshammer},
     title = {Canonical Brauer induction and symmetric groups},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {8-A},
     year = {2005},
     pages = {453-460},
     zbl = {1125.20005},
     mrnumber = {2141824},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2005_8_8B_2_453_0}
}
Boltje, Robert; Külshammer, Burkhard. Canonical Brauer induction and symmetric groups. Bollettino dell'Unione Matematica Italiana, Tome 8-A (2005) pp. 453-460. http://gdmltest.u-ga.fr/item/BUMI_2005_8_8B_2_453_0/

[B] Boltje, R., A general theory of canonical induction formulae, J. Alg., 206 (1998), 293-343. | MR 1637292 | Zbl 0913.20001

[BB] Bley, W. - Boltje, R., Cohomological Mackey functors in number theory, Preprint 2001. | MR 2032439 | Zbl 1061.11059

[CR] Curtis, C.W. - Reiner, I., Methods of representation theory, Vol. II, John Wiley & Sons (New York, 1987). | MR 892316 | Zbl 0616.20001

[JK] James, G. - Kerber, A., The representation theory of the symmetric group, Addison-Wesley (Reading, 1981). | MR 644144 | Zbl 0491.20010

[SO] Spiegel, E. - O'Donell, C.J., Incidence algebras, Marcel Dekker (New York, 1997). | MR 1445562 | Zbl 0871.16001