The study of circumcenters in different types of triangles in real normed spaces gives new characterizations of inner product spaces.
Lo studio dei circocentri in tipi diferenti di triangoli appartenenti a spazi normati reali ci dà nuove caratterizzazioni degli spazi con prodotto scalare.
@article{BUMI_2005_8_8B_2_421_0, author = {M. S. Tom\'as}, title = {Circumcenters in real normed spaces}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {8-A}, year = {2005}, pages = {421-430}, zbl = {1150.46010}, mrnumber = {2149393}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2005_8_8B_2_421_0} }
Tomás, M. S. Circumcenters in real normed spaces. Bollettino dell'Unione Matematica Italiana, Tome 8-A (2005) pp. 421-430. http://gdmltest.u-ga.fr/item/BUMI_2005_8_8B_2_421_0/
[1] Characterizations of inner product structures involving the radius of the inscribed or circumscribed circumference, Arch. Math. (BRNO), 32 (1996), 233-239. | MR 1421858 | Zbl 0909.46020
- - ,[2] Orthocenters in real normed spaces and the Euler line, Aeq. Math., 67, n. 1-2 (2004), 180-187. | MR 2049616 | Zbl 1061.46016
- ,[3] Characterizations of inner product spaces, Basel-Boston-Stuttgart (1986). | MR 941812 | Zbl 0617.46030
,[4] | MR 346644 | Zbl 0181.48101
, Introduction to Geometry, John Wiley and sons (1969).[5] Perpendicular bisectors and orthogonality, Arch. Math.(Basel), 69 (1997), 491-496. | MR 1480516 | Zbl 0917.46015
- ,[6] Characterizations of Hilbertian Norms, Bolletino U.M.I., 15 (1978), 161-169. | MR 498687 | Zbl 0381.46007
,[7] I, Madrid, Euler (1986).
, Curso de Geometría Métrica, Tomo[8] Incenters in real normed spaces, Aeq. Math., 67, n. 1-2 (2004), 63-72. | MR 2049605 | Zbl 1061.46017
,