Si discute il comportamento asintotico di energie di tipo Ginzburg-Landau, per funzioni da in , e sotto l'ipotesi che l'esponente di crescita sia strettamente maggiore di . In particolare, si illustra un risultato di compattezza e di -convergenza, rispetto a una opportuna topologia sui Jacobiani, visti come correnti -dimensionali. L'energia limite è definita sulla classe degli -bordi interi , e la sua densità dipende localmente dalla molteplicità di tramite una famiglia di costanti di profilo ottimale.
We discuss the asymptotic behaviour of energies of Ginzburg-Landau type, for maps from into , and when the growth exponent is strictly larger than . We illustrate a compactness and -convergence result, with respect to a suitable topology on the Jacobians, seen as -dimensional currents. The limit energy is defined on the class of -integral boundaries , and its density depends locally on the multiplicity of through a family of optimal profile constants.
@article{BUMI_2005_8_8B_2_397_0, author = {Ilaria Fragal\`a}, title = {Fenomeni di concentrazione per energie di tipo Ginzburg-Landau}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {8-A}, year = {2005}, pages = {397-414}, zbl = {1182.49003}, mrnumber = {2149391}, language = {it}, url = {http://dml.mathdoc.fr/item/BUMI_2005_8_8B_2_397_0} }
Fragalà, Ilaria. Fenomeni di concentrazione per energie di tipo Ginzburg-Landau. Bollettino dell'Unione Matematica Italiana, Tome 8-A (2005) pp. 397-414. http://gdmltest.u-ga.fr/item/BUMI_2005_8_8B_2_397_0/
[1] Variational models for phase transitions. An approach via Γ-convergence. Differential equations and calculus of variations. Topics on geometrical evolutions problems and degree theory (Pisa 1996). Eds. et al. Springer, Berlin (2000), 95-114. | MR 1757697 | Zbl 0957.35017
,[2] Functions with prescribed singularities, J. Eur. Math. Soc, 5 (2003), 275-311. | MR 2002215 | Zbl 1033.46028
- - ,[3] Variational convergence for functionals of Ginzburg-Landau type, preprint (2003), in fase di stampa su Indiana Univ. Math. J. | MR 2177107 | Zbl 1160.35013
- - ,[4] 18, Oxford University Press, New York (2000). | MR 1857292 | Zbl 0957.49001
- - , Functions of Bounded Variation and Free Discontinuity Problems, Oxford Lecture Series in Mathematics and its Applications[5] 13, Birkhäuser, Boston (1994). | MR 1269538 | Zbl 0802.35142
- - , Ginzburg-Landau vortices, Progress in Nonlinear Differential Equations and Their Applications[6] 22, Oxford University Press, New York (2002). | MR 1968440 | Zbl 1198.49001
, Γ-Convergence for Beginners, Oxford Lecture Series in Mathematics and its Applications[7] Free energy of a non-uniform system I - Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267.
- ,[8] 8, Birkhäuser, Boston (1993). | MR 1201152 | Zbl 0816.49001
, An introduction to Γ-convergence, Progress in Nonlinear Differential Equations and Their Applications[9] Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 58 (1958), 258-267. | Zbl 0339.49005
- ,[10] Concentration of Ginzburg-Landau energies with «supercritical» growth, Preprint no. 554 del Dipartimento di Matematica del Politecnico di Milano (2003). | MR 2237153 | Zbl 1109.49014
- ,[11] On the theory of superconductivity, Zh. Èksper. Teoret. Fiz., 20 (1950), 1064-1082.
- ,[12] On the theory of superfluidity, Soviet Phys. JETP, 7 (1958), 858-861. | MR 105929
- ,[13] Mappings minimizing the $L^p$-norm of the gradient, Comm. Pure Appl. Math., 40 (1987), 555-588. | MR 896767 | Zbl 0646.49007
- ,[14] Lower bounds for generalized Ginzburg-Landau functionals, Siam J. Math. Anal., 30 (1999), 721-746. | MR 1684723 | Zbl 0928.35045
,[15] Functions of bounded higher variation, Indiana Univ. Math. J., 51 (2002), 645-677. | MR 1911049 | Zbl 1057.49036
- ,[16] The Jacobian and the Ginzburg-Landau energy, Calc. Var. Partial Differential Equations, 14 (2002), 151-191. | MR 1890398 | Zbl 1034.35025
- ,[17] Un esempio di G-convergenza, Boll. Un. Mat. Ital. B (5), 14 (1977), 285-299. | MR 445362 | Zbl 0356.49008
- ,[18] Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis 3, Australian National University, Canberra (1983). | MR 756417 | Zbl 0546.49019
,