Absorption effects for some elliptic equations with singularities
Porretta, A.
Bollettino dell'Unione Matematica Italiana, Tome 8-A (2005), p. 369-395 / Harvested from Biblioteca Digitale Italiana di Matematica

We give an expository review of recent results obtained for elliptic equations having natural growth terms of absorption type and singular data. As a new result, we provide an application to the case of lower order terms of subcritical growth, proving a general solvability result with measure data for a class of equations modeled on (1.6).

In questa nota si presenta una breve rassegna di alcuni recenti risultati ottenuti su una classe di equazioni ellittiche con termini di assorbimento a crescita naturale e dati singolari. Si mettono in luce tipici fenomeni (stabilità, esistenza o nonesistenza, singolarità rimovibili, effetti di barriera) dovuti essenzialmente all'effetto regolarizzante dei termini di assorbimento che in alcuni casi può impedire la presenza o la diffusione di singolarità nell’equazione. Oltre all'esposizione di risultati già noti, si presenta una nuova applicazione al caso di crescita sottocritica per l'equazione modello (1.6), per la quale dimostriamo un risultato generale di esistenza con dato misura, nelle ipotesi ottimali che estendono la classica condizione di P. Benilan e H. Brezis [4].

Publié le : 2005-06-01
@article{BUMI_2005_8_8B_2_369_0,
     author = {A. Porretta},
     title = {Absorption effects for some elliptic equations with singularities},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {8-A},
     year = {2005},
     pages = {369-395},
     zbl = {1151.35028},
     mrnumber = {2149390},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2005_8_8B_2_369_0}
}
Porretta, A. Absorption effects for some elliptic equations with singularities. Bollettino dell'Unione Matematica Italiana, Tome 8-A (2005) pp. 369-395. http://gdmltest.u-ga.fr/item/BUMI_2005_8_8B_2_369_0/

[1] Bandle, C. - Giarrusso, E., Boundary blow-up for semilinear elliptic equations with nonlinear gradient terms, Adv. Diff. Equat., 1 (1996), 133-150. | MR 1357958 | Zbl 0840.35034

[2] Bandle, C. - Marcus, M., Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behavior, J. Anal. Math., 58 (1992), 9-24. | MR 1226934 | Zbl 0802.35038

[3] Benilan, P. - Boccardo, L. - Gallouët, T. - Gariepy, R. - Pierre, M. - Vázquez, J. L., An L1 theory of existence and uniqueness of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22 (1995), 240-273. | MR 1354907 | Zbl 0866.35037

[4] Benilan, P. - Brezis, H., Nonlinear problems related to the Thomas-Fermi equation, J. Evolution Equations, 3 (2003), 673-770. | MR 2058057 | Zbl 1150.35406

[5] Bensoussan, A. - Boccardo, L. - Murat, F., On a nonlinear partial differential equation having natural growth terms and unbounded solutions, Ann. Inst. H. Poincaré Anal. Non Linéaire, 5 (1988), 347-364. | MR 963104 | Zbl 0696.35042

[6] Boccardo, L., T-minima: an approach to minimization problems in L1, Contributions in honor of the memory of Ennio De Giorgi. Ricerche Mat., 49 (2000), 135-154. | MR 1826220 | Zbl 1009.49002

[7] Boccardo, L. - Gallouët, T., Strongly nonlinear elliptic equations having natural growth terms and L1 data, Nonlinear Anal. T.M.A., 19 (1992), 573-579. | MR 1183664 | Zbl 0795.35031

[8] Boccardo, L. - Gallouët, T. - Orsina, L., Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 539-551. | MR 1409661 | Zbl 0857.35126

[9] Boccardo, L. - Gallouët, T. - Orsina, L., Existence and nonexistence of solutions for some nonlinear elliptic equations, Journal d'Analyse Math., 73 (1997), 203-223. | MR 1616410 | Zbl 0898.35035

[10] Brezis, H., Nonlinear elliptic equations involving measures, in Variational Inequalities, Cottle, Giannessi, Lions ed., Wiley, 1980, 53-73. | Zbl 0643.35108

[11] Brezis, H., Some Variational Problems of the Thomas-Fermi type, in Contributions to nonlinear partial differential equations (Madrid, 1981), 82-89, Res. Notes in Math.89, Pitman, Boston Mass.-London, 1983. | MR 578739 | Zbl 0533.35038

[12] Brezis, H., Semilinear equations in RN without condition at infinity, Appl. Math. Optim., 12, no. 3 (1984), 271-282. | MR 768633 | Zbl 0562.35035

[13] Brezis, H. - Marcus, M. - Ponce, A., Nonlinear elliptic equations with measures revisited, to appear in Annals of Math. Studies, Princeton Univ. Press. | MR 2333208 | Zbl 1151.35034

[13 bis] Brezis, H. - Nirenberg, L., Removable singularities for some nonlinear elliptic equations, Top. Methods Nonlin. Anal., 9 (1997), 201-219. | MR 1491843 | Zbl 0905.35027

[14] Dal Maso, G. - Murat, F. - Orsina, L. - Prignet, A., Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 28, 4 (1999), 741-808. | MR 1760541 | Zbl 0958.35045

[15] Fukushima, M. - Sato, K. - Taniguchi, S., On the closable part of pre-Dirichlet forms and the fine support of the underlying measures, Osaka J. Math., 28 (1991), 517-535. | MR 1144471 | Zbl 0756.60071

[16] Gmira, A. - Veron, L., Boundary singularities of solutions of some nonlinear elliptic equations, Duke Math. J., 64 (1991), 271-324. | MR 1136377 | Zbl 0766.35015

[17] Iwaniec, T. - Sbordone, C., Weak minima of variational integrals, J. Reine Angew. Math., 454 (1994), 143-161. | MR 1288682 | Zbl 0802.35016

[18] Keller, J. B., On solutions of Δu=fu, Comm. Pure Appl. Math., 10 (1957), 503-510. | MR 91407 | Zbl 0090.31801

[19] Lasry, J.-M. - Lions, P.-L., Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. I. The model problem, Math. Ann., 283, n. 4 (1989), 583-630. | MR 990591 | Zbl 0688.49026

[20] Leray, J. - Lions, J.-L., Quelques resultats de Višik sur les problemes elliptiques non lineaires par les methodes de Minty-Browder, Bull. Soc. Math. France, 93 (1965), 97-107. | MR 194733 | Zbl 0132.10502

[21] Loewner, C. - Nirenberg, L., Partial differential equations invariant under conformal or projective transformations, Contributions to analysis (a collection of papers dedicated to Lipman Bers), pp. 245-272, Academic Press, New York, 1974. | MR 358078 | Zbl 0298.35018

[22] Marcus, M. - Veron, L., Uniqueness and asymptotic behaviour of solutions with boundary blow-up for a class of nonlinear elliptic equations, Ann. Inst. H. Poincare Anal. Non Lineaire, 14 (1997), 237-274. | MR 1441394 | Zbl 0877.35042

[23] Marcus, M. - Veron, L., Existence and uniqueness results for large solutions of general nonlinear elliptic equations, Journal of Evolution Equations, 3 (2003), 637-652. | MR 2058055 | Zbl 1160.35408

[24] Murat, F. - Porretta, A., Stability properties, existence and nonexistence of renormalized solutions for elliptic equations with measure data, Comm. P.D.E., 27, n. 11 & 12 (2002), 2267-2310. | MR 1944030 | Zbl 1129.35397

[25] Orsina, L., Weak minima for some functionals and elliptic equations involving measures, C. R. Acad. Sci. Paris322, Serie I, (1996), 1151-1156. | MR 1396657 | Zbl 0849.35024

[26] Orsina, L. - Porretta, A., Strong stability results for nonlinear elliptic equations with respect to very singular perturbation of the data, Comm. in Contemporary Math., 3 (2001), 259-285. | MR 1831931 | Zbl 1162.35371

[27] Osserman, R., On the inequality Δu;f(u), Pacific J. Math., 7 (1957), 1641-1647. | MR 98239 | Zbl 0083.09402

[28] Porretta, A., Some remarks on the regularity of solutions for a class of elliptic equations with measure data, Houston Journ. of Math., 26 (2000), 183-213. | MR 1814734 | Zbl 0974.35032

[29] Porretta, A., Remarks on the existence or loss of minima of infinite energy, preprint. | MR 2337027 | Zbl 1194.49008

[30] Porretta, A., Local estimates and large solutions for some elliptic equations with absorption, Advances in Diff. Eq.9, n. 3-4 (2004), 329-351. | MR 2100631 | Zbl 1150.35401

[31] Porretta, A., PHD Thesis, Università di Roma «La Sapienza», 1999.

[32] Porretta, A., Existence for elliptic equations in L1 having lower order terms with natural growth, Portugaliae Math., 57 (2000), 179-190. | MR 1759814 | Zbl 0963.35068

[33] Porretta, A., Some uniqueness results for elliptic equations without condition at infinity, Commun. Contemporary Mathematics, 5, n. 5 (2003), 1-13. | MR 2017714 | Zbl 1156.35369

[34] Stampacchia, G., Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier, (Grenoble), 15, n. 1 (1965), 189-258. | MR 192177 | Zbl 0151.15401

[35] L. Vazquez, J., On a semilinear equation in R2 involving bounded measures, Proc. Royal Soc. Edinburgh, 95A (1983), 181-202. | MR 726870 | Zbl 0536.35025

[36] Veron, L., Semilinear elliptic equations with uniform blow-up on the boundary, J. Analyse Math., 59 (1992), 231-250. | MR 1226963 | Zbl 0802.35042

[37] Veron, L., Elliptic equations involving measures, to appear in Handbook for Partial Differential Equations, M.Chipot, P.Quittner Eds, Elsevier. | MR 2103694 | Zbl 1129.35478