In a recent paper [3] C. Baiocchi, V. Komornik and P. Loreti obtained a generalisation of Parseval's identity by means of divided differences. We give here a proof of the optimality of that theorem.
In un lavoro recente [3] C. Baiocchi, V. Komornik e P. Loreti hanno ottenuto una generalizzazione dell'identità di Parseval utilizzando delle differenze divise. Noi dimostriamo l'ottimalità del loro teorema.
@article{BUMI_2005_8_8B_1_251_0, author = {Michel Mehrenberger}, title = {Critical length for a Beurling type theorem}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {8-A}, year = {2005}, pages = {251-258}, zbl = {1140.42013}, mrnumber = {2122984}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2005_8_8B_1_251_0} }
Mehrenberger, Michel. Critical length for a Beurling type theorem. Bollettino dell'Unione Matematica Italiana, Tome 8-A (2005) pp. 251-258. http://gdmltest.u-ga.fr/item/BUMI_2005_8_8B_1_251_0/
[1] Exponential Riesz bases of subspaces and divided differences, St. Petersburg Math. J., 13 (3) (2002), 339-351. | MR 1850184 | Zbl 0999.42018
- ,[2] Ingham type theorems and applications to control theory, Bol. Un. Mat. Ital. B (8), 2, no. 1 (1999), 33-63. | MR 1794544 | Zbl 0924.42022
- - ,[3] Ingham-Beurling type theorems with weakened gap conditions, Acta Math. Hungar., 97 (1-2) (2000), 55-95. | MR 1932795 | Zbl 1012.42022
- - ,[4] On Landaus necessary density conditions for sampling and interpolation of band-limited functions, J. London Math. Soc. (2), 54 (1996), 557-565. | MR 1413898 | Zbl 0893.42017
- ,[5] Necessary density conditions for sampling and interpolation of certain entire functions, Acta Math., 117 (1967), 37-52. | MR 222554 | Zbl 0154.15301
,[6] On the Connection between Exponential Bases and Certains Related Sequences in , Journal of Functional Analysis, 130 (1995), 131-160. | MR 1331980 | Zbl 0872.46006
,[7] Divided differences and system of nonharmonic Fourier series, Proc. Amer. Math. Soc., 80 (1980), 47-57. | MR 574507 | Zbl 0448.42009
, , An Introduction to Nonharmonic Fourier Series, Academic Press, New York, 1980.