Topological degree, Jacobian determinants and relaxation
Fonseca, Irene ; Fusco, Nicola ; Marcellini, Paolo
Bollettino dell'Unione Matematica Italiana, Tome 8-A (2005), p. 187-250 / Harvested from Biblioteca Digitale Italiana di Matematica

A characterization of the total variation TVu,Ω of the Jacobian determinant detDu is obtained for some classes of functions u:ΩRn outside the traditional regularity space W1,nΩ;Rn. In particular, explicit formulas are deduced for functions that are locally Lipschitz continuous away from a given one point singularity x0Ω. Relations between TVu,Ω and the distributional determinant DetDu are established, and an integral representation is obtained for the relaxed energy of certain polyconvex functionals at maps uW1,pΩ;RnW1,Ω\x0;Rn.

Si ottiene una caratterizzazione della variazione totale TVu,Ω del determinante Jacobiano detDu per alcune classi di applicazioni u:ΩRn che non fanno parte della tradizionale classe di Sobolev W1,nΩ;Rn. In particolare, si forniscono formule esplicite per applicazioni localmente Lipschitziane al di fuori di un punto isolato x0Ω. Si stabiliscono anche alcune relazioni fra TVu,Ω e il determinante distribuzionale DetDu. Inoltre si fornisce una rappresentazione integrale per l'energia rilassata di certi integrali policonvessi relativi ad applicazioni uW1,pΩ;RnW1,Ωx0;Rn.

Publié le : 2005-02-01
@article{BUMI_2005_8_8B_1_187_0,
     author = {Irene Fonseca and Nicola Fusco and Paolo Marcellini},
     title = {Topological degree, Jacobian determinants and relaxation},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {8-A},
     year = {2005},
     pages = {187-250},
     zbl = {1177.49066},
     mrnumber = {2122983},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2005_8_8B_1_187_0}
}
Fonseca, Irene; Fusco, Nicola; Marcellini, Paolo. Topological degree, Jacobian determinants and relaxation. Bollettino dell'Unione Matematica Italiana, Tome 8-A (2005) pp. 187-250. http://gdmltest.u-ga.fr/item/BUMI_2005_8_8B_1_187_0/

[1] Acerbi, E. G. - Bouchitté, G. - Fonseca, I., Relaxation of convex functionals: the gap problem, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 20 (2003), 359-390. | MR 1972867 | Zbl 1025.49012

[2] Acerbi, E. - Dal Maso, G., New lower semicontinuity results for polyconvex integrals case, Calc. Var., 2 (1994), 329-372. | MR 1385074 | Zbl 0810.49014

[3] Acerbi, E. - Fusco, N., Semicontinuity problems in the calculus of variations, Arch. Rational Mech. Anal., 86 (1984), 125-145. | MR 751305 | Zbl 0565.49010

[4] Ball, J. M., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal., 63 (1977), 337-403. | MR 475169 | Zbl 0368.73040

[5] Ball, J. M., Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Phil. Trans. Roy. Soc. London, A, 306 (1982), 557-611. | MR 703623 | Zbl 0513.73020

[6] Bethuel, F., A characterization of maps in H1B3,S2 which can be approximated by smooth maps, Ann. Inst. H. Poincaré, Anal. Non Lineaire, 7 (1990), 269-286. | MR 1067776 | Zbl 0708.58004

[7] Bethuel, F. - Brezis, H. - Heléin F., F., Ginzburg-Landau Vortices, Birkhäuser, Boston, 1994. | MR 1269538 | Zbl 0802.35142

[8] Bojarski, B. - Hajlcasz, P., Pointwise inequalities for Sobolev functions and some applications, Studia Math., 106 (1993), 77-92. | MR 1226425 | Zbl 0810.46030

[9] Bouchitté, G. - Fonseca, I. - Malý, J., The effective bulk energy of the relaxed energy of multiple integrals below the growth exponent, Proc. Royal Soc. Edinburgh Sect. A, 128 (1998), 463-479. | MR 1632814 | Zbl 0907.49008

[10] Brezis, H. - Coron, J. M. - Lieb, E. H., Harmonic maps with defects, Comm. Math. Phys., 107 (1986), 649-705. | MR 868739 | Zbl 0608.58016

[11] Brezis, H. - Fusco, N. - Sbordone, C., Integrability for the Jacobian of orientation preserving mappings, J. Funct. Anal, 115 (1993), 425-431. | MR 1234399 | Zbl 0847.26012

[12] Brezis, H. - Nirenberg, L., Degree theory and BMO: I, Sel. Math., 2 (1995), 197-263. | MR 1354598 | Zbl 0852.58010

[13] Brezis, H. - Nirenberg, L., Degree theory and BMO: II, Sel. Math., 3 (1996), 309-368. | MR 1422201 | Zbl 0868.58017

[14] Cartan, H., Formes différentielles, Hermann, Paris, 1967. | MR 231303 | Zbl 0184.12701

[15] Celada, P. - Dal Maso, G., Further remarks on the lower semicontinuity of polyconvex integrals, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 11 (1994), 661-691. | MR 1310627 | Zbl 0833.49013

[16] Chapman, S. J., A hierarchy of models for type-II superconductors, Siam Review, 42 (2000), 555-598. | MR 1814048 | Zbl 0967.82014

[17] Cho, K. - Gent, A. N., Cavitation in models elastomeric composites, J. Mater. Sci., 23 (1988), 141-144.

[18] Coifman, R. - Lions, P. L. - Meyer, Y. - Semmes, S., Compacité par compensation et espaces de Hardy, C. R. Acad. Sci. Paris, 309 (1989), 945-949. | MR 1054740 | Zbl 0684.46044

[19] Dacorogna, B., Direct Methods in Calculus of Variations, Appl. Math. Sciences, 78, Springer-Verlag, Berlin1989. | MR 990890 | Zbl 0703.49001

[20] Dacorogna, B. - Marcellini, P., Semicontinuité pour des intégrandes polyconvexes sans continuité des déterminants, C. R. Acad. Sci. Paris, 311 (1990), 393-396. | MR 1071650 | Zbl 0723.49007

[21] Dacorogna, B. - Murat, F., On the optimality of certain Sobolev exponents for the weak continuity of determinants, J. Funct. Anal., 105 (1992), 42-62. | MR 1156669 | Zbl 0769.46025

[22] Dal Maso, G. - Sbordone, C., Weak lower semicontinuity of polyconvex integrals: a borderline case, Math. Z., 218 (1995), 603-609. | MR 1326990 | Zbl 0822.49010

[23] Federer, H., Geometric measure theory, Springer-Verlag, Berlin, 1969. | MR 257325 | Zbl 0874.49001

[24] Fonseca, I. - Fusco, N. - Marcellini, P., On the Total Variation of the Jacobian, J. Funct. Anal., 207 (2004), 1-32. | MR 2027634 | Zbl 1041.49016

[25] Fonseca, I. - Gangbo, W., Local invertibility of Sobolev functions, SIAM J. Math. Anal., 26 (1995), 280-304. | MR 1320221 | Zbl 0839.30018

[26] Fonseca, I. - Gangbo, W., Degree theory in analysis and applications, Oxford Lecture Series in Mathematics and its Applications, 2. Clarendon Press, Oxford, 1995. | MR 1373430 | Zbl 0852.47030

[27] Fonseca, I. - Malý, J., Relaxation of Multiple Integrals below the growth exponent, Anal. Inst. H. Poincaré. Anal. Non Linéaire, 14 (1997), 309-338. | MR 1450951 | Zbl 0868.49011

[28] Fonseca, I. - Leoni, G. - Malý, J., Weak continuity of jacobian integrals. In preparation.

[29] Fonseca, I. - Marcellini, P., Relaxation of multiple integrals in subcritical Sobolev spaces, J. Geometric Analysis, 7 (1997), 57-81. | MR 1630777 | Zbl 0915.49011

[30] Fusco, N. - Hutchinson, J. E., A direct proof for lower semicontinuity of polyconvex functionals, Manuscripta Math., 87 (1995), 35-50. | MR 1329439 | Zbl 0874.49015

[31] Gangbo, W., On the weak lower semicontinuity of energies with polyconvex integrands, J. Math. Pures et Appl., 73 (1994), 455-469. | MR 1300984 | Zbl 0829.49011

[32] Gent, A. N., Cavitation in rubber: a cautionary tale, Rubber Chem. Tech., 63 (1991), G49-G53.

[33] Gent, A. N. - Tompkins, D. A., Surface energy effects for small holes or particles in elastomers, J. Polymer Sci., Part A, 7 (1969), 1483-1488.

[34] Giaquinta, M. - Modica, G. - Souček, J., Cartesian currents, weak dipheomorphisms and existence theorems in nonlinear elasticity, Arch. Rat. Mech. Anal., 106 (1989), 97-159. Erratum and addendum: Arch. Rat. Mech. Anal., 109 (1990), 385-592. | MR 980756 | Zbl 0712.73009

[35] Giaquinta, M. - Modica, G. - Souček, J., Cartesian Currents and Variational Problems for Mappings into Spheres, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 16 (1989), 393-485. | MR 1050333 | Zbl 0713.49014

[36] Giaquinta, M. - Modica, G. - Souček, J., Liquid crystals: relaxed energies, dipoles, singular lines and singular points, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 17 (1990), 415-437. | MR 1079984 | Zbl 0760.49026

[37] Giaquinta, M. - Modica, G. - Souček, J., Graphs of finite mass which cannot be approximated in area by smooth graphs, Manuscripta Math., 78 (1993), 259-271. | MR 1206156 | Zbl 0796.58006

[38] Giaquinta, M. - Modica, G. - Souček, J., Cartesian currents in the calculus of variations I and II, Ergebnisse der Mathematik und Ihrer Grenzgebiete Vol. 38, Springer-Verlag, Berlin, 1998. | MR 1645086 | Zbl 0914.49002

[39] Hajlcasz, P., Note on weak approximation of minors, Ann. Inst. H. Poincaré, 12 (1995), 415-424. | MR 1341410 | Zbl 0910.49025

[40] Iwaniec, T. - Sbordone, C., On the integrability of the Jacobian under minimal hypotheses, Arch. Rational Mech. Anal., 119 (1992), 129-143. | MR 1176362 | Zbl 0766.46016

[41] James, R. D. - Spector, S. J., The formation of filamentary voids in solids, J. Mech. Phys. Solids, 39 (1991), 783-813. | MR 1120242 | Zbl 0761.73020

[42] Jerrard, R. L. - Soner, H. M., Functions of bounded higer variation, to appear. | MR 1911049 | Zbl 1057.49036

[43] Malý, J., Lp-approximation of Jacobians, Comment. Math. Univ. Carolin., 32 (1991), 659-666. | MR 1159812 | Zbl 0753.46024

[44] Malý, J., Weak lower semicontinuity of polyconvex integrals, Proc. Roy. Soc. Edinburgh, 123A (1993), 681-691. | MR 1237608 | Zbl 0813.49017

[45] Malý, J., Weak lower semicontinuity of quasiconvex integrals, Manusc. Math., 85 (1994), 419-428. | MR 1305752 | Zbl 0862.49017

[46] Marcellini, P., Approximation of quasiconvex functions and lower semicontinuity of multiple integrals, Manuscripta Math., 51 (1985), 1-28. | MR 788671 | Zbl 0573.49010

[47] Marcellini, P., On the definition and the lower semicontinuity of certain quasiconvex integrals, Ann. Inst. Henri Poincare, Analyse non Linéaire, 3 (1986), 391-409. | MR 868523 | Zbl 0609.49009

[48] Marcellini, P., The stored-energy for some discontinuous deformations in nonlinear elasticity, Essays in honor of E. De Giorgi, Vol. 2, ed. F.Colombini et al., Birkhäuser, 1989, 767-786. | MR 1034028 | Zbl 0679.73006

[49] Milnor, J. M., From the differentiable viewpoint, The Univ. Press of Virginia, Charlottesville, 1965. | Zbl 0136.20402

[50] Morrey, C. B., Multiple integrals in the calculus of variations, Springer-Verlag, Berlin, 1966. | MR 202511 | Zbl 1213.49002

[51] Müller, S., Weak continuity of determinants and nonlinear elasticity, C. R. Acad. Sci. Paris, 307 (1988), 501-506. | MR 964116 | Zbl 0679.34051

[52] Müller, S., Det4det. A Remark on the distributional determinant, C. R. Acad. Sci. Paris, 311 (1990), 13-17. | MR 1062920 | Zbl 0717.46033

[53] Müller, S., Higher integrability of determinants and weak convergence in L1, J. Reine Angew. Math., 412 (1990), 20-34. | MR 1078998 | Zbl 0713.49004

[54] Müller, S., On the singular support of the distributional determinant, Annales Institut Henri Poincaré, Analyse Non Linéaire, 10 (1993), 657-696. | MR 1253606 | Zbl 0792.46027

[55] Müller, S. - Spector, S. J., An existence theory for nonlinear elasticity that allows for cavitation, Arch. Rat. Mech. Anal., 131 (1995), 1-66. | MR 1346364 | Zbl 0836.73025

[56] Müller, S. - Tang, Q. - Yan, S. B., On a new class of elastic deformations not allowing for cavitation, Ann. IHP, 11 (1994), 217-243. | MR 1267368 | Zbl 0863.49002

[57] Murat, F., Compacité par compensation: condition necessaire et suffisante de continuité faible sous une hypothése de rang constant, Ann. Sc. Norm. Sup. Pisa, 8 (1981), 68-102. | MR 616901 | Zbl 0464.46034

[58] Reshetnyak, Y., Weak convergence and completely additive vector functions on a set, Sibir. Math., 9 (1968), 1039-1045. | Zbl 0176.44402

[59] Sivaloganathan, J., Uniqueness of regular and singular equilibria for spherically symmetric problems of nonlinear elasticity, Arch. Rat. Mech. Anal., 96 (1986), 97-136. | MR 853969 | Zbl 0628.73018