We investigate factorization of elements in overrings of a half-factorial domain in relation with the behaviour of the boundary map of . It turns out that a condition, called , on the extension plays a central role in this study. We finally apply our results to the special case of polynomial rings.
In questo articolo studiamo la fattorizzazione di elementi nei sopranelli di un dominio metà-fattoriale in funzione del comportamento della funzione di bordo di . A tale riguardo, troviamo che gioca un ruolo centrale una condizione sulle estensioni, che chiamiamo condizione . Quindi studiamo quando questa condizione è verificata. Infine, applichiamo i risultati ottenuti al caso speciale degli anelli di polinomi.
@article{BUMI_2005_8_8B_1_173_0, author = {Nathalie Gonzalez and S\'ebastien Pellerin}, title = {Boundary map and overrings of half-factorial domains}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {8-A}, year = {2005}, pages = {173-185}, zbl = {1150.13003}, mrnumber = {2122982}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2005_8_8B_1_173_0} }
Gonzalez, Nathalie; Pellerin, Sébastien. Boundary map and overrings of half-factorial domains. Bollettino dell'Unione Matematica Italiana, Tome 8-A (2005) pp. 173-185. http://gdmltest.u-ga.fr/item/BUMI_2005_8_8B_1_173_0/
[1] Overrings of half-factorial domains, Canad. Math. Bull., 37 (1994), 437-442. | MR 1303668 | Zbl 0815.13001
- - ,[2] Locally half-factorial domains, Houston J. Math., 23 (1997), 617-630. | MR 1687334 | Zbl 0922.13015
- ,[3] 189, Marcel Dekker, New York, 1997, 227-241. | MR 1460775 | Zbl 0902.13014
- , Factorization in subrings of and , Lecture Notes in Pure and Applied Mathematics, vol.[4] A characterization of algebraic number fields with class number two, Proc. Amer. Math. Soc., 11 (1960), 391-392. | MR 111741 | Zbl 0202.33101
,[5] Half-factorial domains, a survey, in Non-Noetherian Commutative Ring Theory, Kluwer Academic Publishers, 2001. | MR 1858159 | Zbl 0987.13010
- ,[6] One hundred problems in commutative ring theory, in Non-Noetherian Commutative Ring Theory, Kluwer Academic Publishers, 2001. | MR 1858175 | Zbl 0979.13001
- ,[7] Factorization in Dedekind domains with finite class group, Israel J. Math, 71 (1990), 65-95. | MR 1074505 | Zbl 0717.13014
- ,[8] A characterization of polynomial rings with the half-factorial property, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York, 189 (1997), 291-294. | MR 1460780 | Zbl 0886.13010
,[9] The half-factorial property in integral extensions, Comm. Algebra, 27 (7) (1999), 3153-3159. | MR 1695319 | Zbl 0956.13005
,[10] Half-factorial domains in quadratic fields, J. Algebra, 235 (2001), 417-430. | MR 1805465 | Zbl 0989.11058
,[11] On the integral closure of a half-factorial domain, J. Pure Appl. Algebra, 180 (2003), 25-34. | MR 1966521 | Zbl 1031.13011
,[12] Elasticity of domains, J. Pure Appl. Algebra, 138 (1999), 119-137. | MR 1689617 | Zbl 0935.13002
,[13] Elasticity of domains where A is a UFD, J. Pure Appl. Algebra, 160 (2001), 183-194. | MR 1835999 | Zbl 1001.13008
- - ,[14] Factorization of algebraic integers, Ber. Math. Stat. Sektion im Forschungszentrum, 191 (1983), 1-24. | Zbl 0506.12005
,[15] Examples of half-factorial domains, Canad. Math. Bull., 43 (2000), 362-367. | MR 1776064 | Zbl 1032.13010
,[16] Factorization in some orders with a PID as integral closure, Algebraic number theory and Diophantine analysis (Graz, 1998), 365-390, de Gruyter, Berlin, 2000. | MR 1770474 | Zbl 0971.13016
,[17] Half factorial domains, Israel J. Math., 37 (1980), 281-302. | MR 599463 | Zbl 0509.13017
,