In this communication we focus on goal-oriented anisotropic adaption techniques. Starting point has been the derivation of suitable anisotropic interpolation error estimates for piecewise linear finite elements, on triangular grids in . Then we have merged these interpolation estimates with the dual-based a posteriori error analysis proposed by R. Rannacher and R. Becker. As examples of this general anisotropic a posteriori analysis, elliptic, advection-diffusion-reaction and the Stokes problems are analyzed. Finally, numerical test cases are provided to assess the soundness of the proposed approach.
In questa comunicazione vengono presentate tecniche di adattazione di griglia goal-oriented di tipo anisotropo. Punto di partenza è stata la derivazione di opportune stime di tipo anisotropo per l'errore d'interpolazione, per elementi finiti lineari a pezzi, su griglie triangolari in . Si sono quindi utilizzate tali stime d'interpolazione per generalizzare al caso anisotropo l'analisi a posteriori proposta da R. Rannacher e da R. Becker, basata su un approccio di tipo duale. In questo lavoro tale analisi a posteriori viene particolarizzata al caso di problemi ellittici, di trasporto-diffusione-reazione e al problema di Stokes. Vengono da ultimo forniti alcuni risultati numerici al fine di validare laffidabilità dellapproccio proposto
@article{BUMI_2005_8_8B_1_145_0, author = {Simona Perotto}, title = {Anisotropic mesh adaption: application to computational fluid dynamics}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {8-A}, year = {2005}, pages = {145-165}, zbl = {1150.65028}, mrnumber = {2122980}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2005_8_8B_1_145_0} }
Perotto, Simona. Anisotropic mesh adaption: application to computational fluid dynamics. Bollettino dell'Unione Matematica Italiana, Tome 8-A (2005) pp. 145-165. http://gdmltest.u-ga.fr/item/BUMI_2005_8_8B_1_145_0/
[1] | MR 1885308 | Zbl 1008.65076
- , A posteriori error estimation in finite element analysis, John Wiley & Sons, Inc., New-York, 2000.[2] Adaptive finite element computational fluid dynamics using an anisotropic error estimator, Comput. Methods Appl. Mech. Engrg., 182 (2000), 379-400. | MR 1744255 | Zbl 0986.76035
- - - - ,[3] | MR 1716824 | Zbl 0934.65121
, Anisotropic finite elements: local estimates and applications, Book Series: Advances in Numerical Mathematics, Teubner, Stuttgart, 1999.[4] Anisotropic mesh refinement in stabilized Galerkin methods, Numer. Math., 74 (1996), 261-282. | MR 1408603 | Zbl 0878.65097
- ,[5] A posteriori error estimates for the finite element method, Int. J. Numer. Methods Eng., 12 (1978), 1597-1615. | Zbl 0396.65068
- ,[6] Some a posteriori error estimators for elliptic partial differential equations, Math. Comp., 44, no. 170 (1985), 283-301. | MR 777265 | Zbl 0569.65079
- ,[7] An optimal control approach to a posteriori error estimation in finite element methods, Acta Numerica, 10 (2001), 1-102. | MR 2009692 | Zbl 1105.65349
- ,[8] Choosing bubbles for advection-diffusion problems, Math. Models Methods Appl. Sci., 4 (1994), 571-587. | MR 1291139 | Zbl 0819.65128
- ,[9] Streamline upwind / Petrov-Galerkin formulations for convective dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 32 (1982), 199-259. | MR 679322 | Zbl 0497.76041
- ,[10] | MR 520174 | Zbl 0511.65078
, The finite element method for elliptic problems, North-Holland Publishing Company, Amsterdam, 1978.[11] Approximation by finite element functions using local regularization, RAIRO Anal. Numér., 2 (1975), 77-84. | MR 400739 | Zbl 0368.65008
,[12] Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows, J. Comput. Phys., 187 (2003) 22-46. | Zbl 1047.76541
- ,[13] On optimal triangular meshes for minimizing the gradient error, Numer. Math., 59 (1991), 321-348. | MR 1113194 | Zbl 0724.65006
- ,[14] An absolutely stabilized finite element method for the Stokes problem, Math. Comp., 52 (1989), 495-508. | MR 958871 | Zbl 0669.76051
- ,[15] Adaptive streamline diffusion finite element methods for stationary convection-diffusion problems, Math. Comp., 60 (1993), 167-188. | MR 1149289 | Zbl 0795.65074
- ,[16] Introduction to adaptive methods for differential equations, Acta Numerica, (1995), 105-158. | MR 1352472 | Zbl 0829.65122
- - - ,[17] New anisotropic a priori error estimates, Numer. Math., 89 (2001), 641-667. | MR 1865506 | Zbl 0990.65125
- ,[18] Anisotropic error estimates for elliptic problems, Numer. Math., 94 (2003), 67-92. | MR 1971213 | Zbl 1031.65123
- ,[19] Anisotropic mesh adaptation in Computational Fluid Dynamics: application to the advection-diffusion-reaction and the Stokes problems, to appear in Appl. Num. Math. (2004). | MR 2101976 | Zbl 1107.65098
- - ,[20] An anisotropic a-posteriori error estimate for a convection-diffusion problem, Comput. Visual. Sci., 4 (2001), 99-104. | MR 1946990 | Zbl 1009.76051
- - ,[21] Convergence analyses of Galerkin least-squares methods for symmetric advective-diffusive forms of the Stokes and incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 105 (1993), 285-298. | MR 1220082 | Zbl 0771.76037
- ,[22] Error analysis of some GLS methods for elasticity equations, SIAM J. Numer. Anal., 28 (1991), 1680-1697. | MR 1135761 | Zbl 0759.73055
- ,[23] Continuous metrics and mesh optimization, submitted for the publication in Appl. Numer. Math., (2003).
- - - ,[24] | MR 1686530 | Zbl 0908.65143
- , Delaunay triangulation and meshing-application to finite element, Editions Hermes, Paris, 1998.[25] Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality, Acta Numerica, 11 (2002), 145-236. | MR 2009374 | Zbl 1105.65350
- ,[26] Anisotropic mesh adaptation: a step towards a mesh-independent and user-independent CFD, in Barriers and Challenges in Computational Fluid Dynamics, Kluwer Acad. Publ., 1998, 99-117. | MR 1607369 | Zbl 0940.76034
- - - - ,[27] BAMG: bidimensional anisotropic mesh generator, (1998). http://www-rocq.inria.fr/gamma/cdrom/www/bamg/eng.htm
,[28] A new finite element formulation for computational fluid dynamics. V. Circumventing the Babuška-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equalorder interpolations, Comput. Methods Appl. Mech. Engrg., 59 (1986), 85-99. | MR 868143 | Zbl 0622.76077
- - ,[29] A new finite element formulation for computational fluid dynamics: VIII. the Galerkin/least-squares method for advective-diffusive equations, Comput. Methods Appl. Mech. Engrg., 73 (1989), 173-189. | MR 1002621 | Zbl 0697.76100
- - ,[30] A posteriori error estimation for anisotropic tetrahedral and triangular finite element meshes, Ph.D. thesis, Fakultät für Mathematik der Technischen Universität Chemnitz, Chemnitz, 1999. | Zbl 0919.65066
,[31] | MR 350177 | Zbl 0223.35039
- , Non-homogeneous boundary value problem and application, Volume I. Springer-Verlag, Berlin, 1972.[32] Stabilized finite elements on anisotropic meshes: a priori error estimates for the advection-diffusion and Stokes problems, SIAM J. Numer. Anal., 41, no. 3 (2003), 1131-1162. | MR 2005198 | Zbl 1053.65089
- - ,[33] On the performance of high aspect ratio elements for incompressible flows, Comput. Methods Appl. Mech. Engrg., 188 (2000), 269-287. | Zbl 0981.76056
,[34] Goal-oriented error estimation and adaptivity for the finite element method, Computers Math. Applic., 41, no. 5-6 (2001), 735-756. | MR 1822600 | Zbl 0987.65110
- ,[35] An anisotropic error indicator based on Zienkiewicz-Zhu error estimator: application to elliptic and parabolic problems, SIAM J. Sci. Comput., 24, no. 4 (2003), 1328-1355. | MR 1976219 | Zbl 1061.65116
,[36] Finite element interpolation of non-smooth functions satisfying boundary conditions, Math. Comp., 54 (1990), 483-493. | MR 1011446 | Zbl 0696.65007
- ,[37] An a posteriori error estimator for anisotropic refinement, Numer. Math., 73 (1996), 373-398. | MR 1389492 | Zbl 0873.65098
,[38] | Zbl 0853.65108
, A review of a posteriori error estimation and adaptive mesh-refinement techniques, B. G. Teubner, Stuttgart, 1996.[39] A simple error estimator and adaptive procedure for practical engineering analysis, Int. J. Numer. Methods Eng., 24 (1987), 337-357. | MR 875306 | Zbl 0602.73063
- ,[40] The superconvergent patch recovery and a posteriori error estimates, Part 1: the recovery technique, Int. J. Numer. Methods Eng., 33 (1992), 1331-1364. | MR 1161557 | Zbl 0769.73084
- ,[41] The superconvergent patch recovery and a posteriori error estimates, Part 2: error estimates and adaptivity, Int. J. Numer. Methods Eng., 33 (1992), 1365-1382. | MR 1161558 | Zbl 0769.73085
- ,