The hydrodynamic moment equations for a quantum system described by a two-band Hamiltonian are derived. In the case of pure states, it is proved that the order-0 and order-1 moment equations yield a closed system which is the two band analogue of Madelung's fluid equations.
Vengono dedotte le equazioni per i momenti idrodinamici di un sistema quantistico descritto da un'Hamiltoniana a due bande. Nel caso di stati puri si dimostra che le equazioni dei momenti di ordine 0 e di ordine 1 forniscono un sistema chiuso che costituisce l'analogo a due bande delle equazioni del fluido di Madelung.
@article{BUMI_2005_8_8B_1_103_0, author = {Luigi Barletti}, title = {Quantum moment equations for a two-band $k\cdot p$ Hamiltonian}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {8-A}, year = {2005}, pages = {103-121}, zbl = {1150.81001}, mrnumber = {2122977}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2005_8_8B_1_103_0} }
Barletti, Luigi. Quantum moment equations for a two-band $k\cdot p$ Hamiltonian. Bollettino dell'Unione Matematica Italiana, Tome 8-A (2005) pp. 103-121. http://gdmltest.u-ga.fr/item/BUMI_2005_8_8B_1_103_0/
[1] A mathematical introduction to the Wigner formulation of quantum mechanics, B. Unione Mat. Ital. B, 6-B (2003), 693-716. | MR 2014828 | Zbl 1117.81091
,[2] On the thermal equilibrium of a quantum system described by a twoband Kane Hamiltonian, submitted.
,[3] | MR 580320 | Zbl 0994.81502
, Quantum Mechanics, Springer Verlag, 1979.[4] Wigner approach to the two-band Kane model for a tunneling diode, Transport Theory Stat. Phys., 32 (2003), 347- 366. | MR 2014722 | Zbl 1035.81028
- - ,[5] Quantum moment hydrodynamics and the entropy principle, J. Statist. Phys., 112 (2003), 587-628. | MR 1997263 | Zbl 1035.82028
- ,[6] Wigner function for multiband transport in semiconductors, Transport Theory Stat. Phys., 32 (2003), 307-325. | MR 2014720 | Zbl 1029.82038
- - - ,[7] | Zbl 0997.82500
, Statistical Mechanics, W. A. Benjamin Inc., 1972.[8] | MR 983366 | Zbl 0682.43001
, Harmonic Analysis in Phase Space, Princeton University Press, 1989.[9] The quantum hydrodynamic model for semiconductor devices, SIAM J. Appl. Math., 54 (1994), 409-427. | MR 1265234 | Zbl 0815.35111
,[10] Quantum hydrodynamics, in Modeling of Collisions, Gauthier-Villars, 1997.
- - ,[11] | MR 1818867 | Zbl 0969.35001
, Quasi-Hydrodynamic Semiconductor Equations, Birkhäuser, 2001.[12] Zener tunneling in semiconductors, J. Phys. Chem. Solids, 12 (1959), 181-188.
,[13] The method, in Physics of III-V Compounds, Semiconductors and Semimetals, Vol. 1, Academic Press, 1966.
,[14] | MR 400931 | Zbl 0178.57901
- , Quantum Mechanics: non-relativistic theory, 3rd ed., Pergamon Press, 1977.[15] Moment closure hierarchies for kinetic theories, J. Statist. Phys., 83 (1996), 1021-1065. | MR 1392419 | Zbl 1081.82619
,[16] Sur les mesures de Wigner, Rev. Matematica Iberoamericana, 9 (1993), 553-618. | MR 1251718 | Zbl 0801.35117
- ,[17] Motion of electrons and holes in perturbed periodic fields, Phys. Rev., 97 (1955), 869-882. | Zbl 0064.23801
- ,[18] Quantentheorie in hydrodynamischer Form, Zeitschr. f. Phys., 40 (1926), 322-326.
,[19] | MR 1063852 | Zbl 0765.35001
- - , Semiconductor Equations, Springer Verlag, 1990.[20]
, Essentials of Semiconductor Physics, Wiley, 1999.[21] Analysis of transmission in polytype interband tunneling heterostructures, J. Appl. Phys., 72 (1992), 4714-4726. | MR 1159619
- ,