Metodi NURBS e SUBDIVISION per la modellazione di curve e superfici
Romani, Lucia
Bollettino dell'Unione Matematica Italiana, Tome 8-A (2005), p. 629-632 / Harvested from Biblioteca Digitale Italiana di Matematica
Publié le : 2005-12-01
@article{BUMI_2005_8_8A_3-1_629_0,
     author = {Lucia Romani},
     title = {Metodi NURBS e SUBDIVISION per la modellazione di curve e superfici},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {8-A},
     year = {2005},
     pages = {629-632},
     language = {it},
     url = {http://dml.mathdoc.fr/item/BUMI_2005_8_8A_3-1_629_0}
}
Romani, Lucia. Metodi NURBS e SUBDIVISION per la modellazione di curve e superfici. Bollettino dell'Unione Matematica Italiana, Tome 8-A (2005) pp. 629-632. http://gdmltest.u-ga.fr/item/BUMI_2005_8_8A_3-1_629_0/

[1] Akima, H., A new method of interpolation and smooth curve fitting based on local procedures, Journal of the Association for Computing Machinary, 17 (4) (Oct. 1970), 589- 602. | Zbl 0209.46805

[2] Gregory, J.A., Shape preserving spline interpolation, Computer Aided Design, 18 (1) (Jan/Feb 1986), 53-57.

[3] Gregory, J.A., Sarfraz, M., A rational cubic spline with tension, Computer Aided Geometric Design, 7 (1990), 1-13. | Zbl 0717.65003

[4] Nielson, G.M., Some piecewise polynomial alternatives to splines under tension, in Barnhill R.E., Riesenfeld R.F. (eds.), Computer Aided Geometric Design, Academic Press, (1974), 209-235.

[5] Sommerfeld, A., Eine besondere auschauliche Ableitung des Gaussischen Fehlergesetzes, Berlin: Festschrift Ludwing Boltzmann (1904), 848-859.