A note of uniqueness on the Cauchy problem for Schrödinger or heat equations with degenerate elliptic principal parts
Takuwa, Hideki
Bollettino dell'Unione Matematica Italiana, Tome 7-A (2004), p. 731-744 / Harvested from Biblioteca Digitale Italiana di Matematica

We study the local uniqueness in the Cauchy problem for Schrödinger or heat equations whose principal parts are nonnegative. We show the compact uniqueness under a weak form of pseudo convexity. This makes up for the known results under the conormal pseudo convexity given by Tataru, Hörmander, Robbiano- Zuily and L. T'Joen. Our method is based on a kind of integral transform and a weak form of Carleman estimate for degenerate elliptic operators.

In questo articolo studiamo la locale unicità nel problema di Cauchy per equazioni di Schrödinger o del calore con parte principale non negativa. Otteniamo l'unicità compatta sotto la condizione di una forma debole di pseudo convessità. Questo si collega ai risultati noti in ipotesi di pseudo convessità conormale ottenuti da Tataru, Hörmander, Robbiano-Zuily e L. T'Joen. Il nostro metodo si basa su di un tipo di trasformazione integrale ed una forma debole di stime di Carleman per operatori ellittici degeneri.

Publié le : 2004-10-01
@article{BUMI_2004_8_7B_3_731_0,
     author = {Hideki Takuwa},
     title = {A note of uniqueness on the Cauchy problem for Schr\"odinger or heat equations with degenerate elliptic principal parts},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {7-A},
     year = {2004},
     pages = {731-744},
     zbl = {1178.35187},
     mrnumber = {2101662},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2004_8_7B_3_731_0}
}
Takuwa, Hideki. A note of uniqueness on the Cauchy problem for Schrödinger or heat equations with degenerate elliptic principal parts. Bollettino dell'Unione Matematica Italiana, Tome 7-A (2004) pp. 731-744. http://gdmltest.u-ga.fr/item/BUMI_2004_8_7B_3_731_0/

[1] Colombini, F.-Del Santo, D.-Zuily, C., Uniqueness and non-uniqueness in the Cauchy problem for a degenerate elliptic operator, Amer. J. Math., 115 (1993), 1281-1297. | MR 1254734 | Zbl 0792.35065

[2] Hörmander, L., Linear Partial Differential Operators, Springer Verlag, 1963. | MR 404822 | Zbl 0108.09301

[3] Hörmander, L., The Analysis of Linear Partial Differential Operators, Springer Verlag, 1983-1985. | Zbl 0521.35002

[4] Hörmander, L., On the uniqueness of the Cauchy problem under partial analyticity assumptions, Geometrical Optics and Related Topics, Birkhäuser, 1997, 179-219. | MR 2033496 | Zbl 0907.35002

[5] T'Joen, L., Uniqueness in the Cauchy problem for quasi-homogeneous operators with partially holomorphic coefficients, Osaka J. Math., 37 (2000), 925-951. | MR 1809913 | Zbl 0982.35005

[6] Nirenberg, L., Uniqueness in the Cauchy problem for a degenerate elliptic second order equation, Differential Geometry and Complex Analysis, Springer-Verlag, 1985, 213-218 | MR 780047 | Zbl 0572.35043

[7] Robbiano, L., Théorème d'unicité adapté au contrôle des solutions des problèmes hyperboliques, Comm. Partial Differential Equations, 16 (1991), 789-800. | MR 1113107 | Zbl 0735.35086

[8] Robbiano, L.-Zuily, C., Uniqueness in the Cauchy problem for operators with partially holomorphic coefficients, Invent. Math., 131 (1998), 493-539. | MR 1614547 | Zbl 0909.35004

[9] Del Santo, D., A Carleman estimate for degenerate elliptic operators with an application to an illposed problem, Boll. U. M. I., 11-B (1997), 327-339. | MR 1459281 | Zbl 0877.35051

[10] Tarama, S., On the estimate of some conjugation, preprint.

[11] Tataru, D., Unique continuation for solutions to PDE's; between Hörmander's theorem and Holmgren's theorem, Comm. Partial Differential Equations, 20 (1995), 855-884. | Zbl 0846.35021

[12] Zuily, C., Uniqueness and Non-uniqueness in the Cauchy Problem, Progress in Math.33, Birkhäuser, 1983. | Zbl 0521.35003