In this paper, the class of all bounded ultraweakly compact operators in Banach spaces is introduced and characterised in terms of their first and second conjugates. We analize the relationship between an ultraweakly compact operator and its conjugate. Examples of operators belonging to this class are exhibited. We also investigate the connection between ultraweak compactness of and minimal subspaces of and we present a result of factorisation for ultraweakly compact operators.
In questo articolo si introduce e si caratterizza la classe di tutti gli operatori ultradebolmente compatti, definiti negli spazi di Banach per mezzo dei loro operatori coniugati. Si analizza la relazione esistente fra un operatore ultradebolmente compatti e il suo coniugato. Si presentano esempi di operatori appartenenti a questa classe. Inoltre, si studia la connessione fra la compattezza ultradebole di e i sottospazi minimali di e si presenta un risultato relativo alla fattorizzazione degli operatori ultradebolmente compatti.
@article{BUMI_2004_8_7B_3_697_0, author = {Teresa Alvarez}, title = {Ultraweakly compact operators and dual spaces}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {7-A}, year = {2004}, pages = {697-711}, zbl = {1179.47020}, mrnumber = {2101660}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2004_8_7B_3_697_0} }
Alvarez, Teresa. Ultraweakly compact operators and dual spaces. Bollettino dell'Unione Matematica Italiana, Tome 7-A (2004) pp. 697-711. http://gdmltest.u-ga.fr/item/BUMI_2004_8_7B_3_697_0/
[1] On operators factorizable through quasi-reflexive Banach spaces, Arch. Math. Vol., 48 (1987), 85-87. | MR 878013 | Zbl 0635.47017
- ,[2] Three-space Problems in Banach Space Theory (Springer Lecture Notes in Math. 1667, 1997). | MR 1482801 | Zbl 0914.46015
- ,[3] Coreflexive and somewhat reflexive Banach spaces, Proc. Amer. Math. Soc., 36 (1972), 421-427. | MR 308748 | Zbl 0264.46009
,[4] | MR 1631548 | Zbl 0911.47002
, Multivalued linear Operators (Marcel Dekker, New York, 1998.)[5] Factoring weakly compact operators, J. Funct. Anal., 17 (1976), 311-327. | MR 355536 | Zbl 0306.46020
- - - ,[6] Sur un théorème de Banach, Duke Math. J.15 (1948), 1057-1071. | MR 27440 | Zbl 0031.36301
,[7] | Zbl 0084.10402
- , Linear Operators Part I (Interscience, New York, 1958).[8] Ultra weak topologies on Banach spaces, Proc. of the seminar on random series, convex sets and geometry of Banach spaces, Various Publ. Series, 24 (1975), 57-66. | MR 390724 | Zbl 0319.46010
,[9] | MR 513590 | Zbl 0412.46006
, Reflexive and superreflexiveBanach spaces (Mathematisch Centrum, Amsterdam, 1978).[10] Espaces de Banach: Existence et unicité de certains préduax, Ann. Inst. Fourier, Grenoble, no. 3 (1978). | MR 511815 | Zbl 0368.46015
,[11] | MR 200692 | Zbl 0148.12501
, Unbounded Linear Operators (McGraw-Hill, New York, 1966).[12] Semi-Fredholm operators and semigroups associated with some classical operator ideals, Proc. Royal Irish Acad., Ser. A, 88A (1988), 35-38. | MR 974281 | Zbl 0633.47029
- ,[13] Some self-dual properties of normed linear spaces, Ann. of Math. Studies, 69 (1972), 159-175. | MR 454600 | Zbl 0233.46025
,[14] Kernels of surjections from -spaces with an applications to Sidon sets, Math. Ann.309, no. 1 (1997), 135-158. | MR 1467651 | Zbl 0901.46008
- ,[15] | MR 500056 | Zbl 0362.46013
- , Classical Banach spaces I, sequence spaces (Springer-Verlag, New York, 1997).[16] Properties of Tauberian Operators on Banach Spaces (Doctoral dissertation, University of Texas at Austin, 1984).
,[17] Total subspaces in dual Banach spaces which are not norming over any infinite dimensional subspace, Studia Math., 105 (1993), 37-49. | MR 1222187 | Zbl 0810.46016
,[18] On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators from to , J. Funct. Anal., 4 (1969), 176-214. | MR 250036 | Zbl 0185.20303
,[19] The generalized Fredholm operators, Trans. Amer. Math. Soc., 216 (1976), 313-326. | MR 423114 | Zbl 0297.47027
,