Ultraweakly compact operators and dual spaces
Alvarez, Teresa
Bollettino dell'Unione Matematica Italiana, Tome 7-A (2004), p. 697-711 / Harvested from Biblioteca Digitale Italiana di Matematica

In this paper, the class of all bounded ultraweakly compact operators in Banach spaces is introduced and characterised in terms of their first and second conjugates. We analize the relationship between an ultraweakly compact operator and its conjugate. Examples of operators belonging to this class are exhibited. We also investigate the connection between ultraweak compactness of TLX,Y and minimal subspaces of Y and we present a result of factorisation for ultraweakly compact operators.

In questo articolo si introduce e si caratterizza la classe di tutti gli operatori ultradebolmente compatti, definiti negli spazi di Banach per mezzo dei loro operatori coniugati. Si analizza la relazione esistente fra un operatore ultradebolmente compatti e il suo coniugato. Si presentano esempi di operatori appartenenti a questa classe. Inoltre, si studia la connessione fra la compattezza ultradebole di TLX,Y e i sottospazi minimali di Y e si presenta un risultato relativo alla fattorizzazione degli operatori ultradebolmente compatti.

Publié le : 2004-10-01
@article{BUMI_2004_8_7B_3_697_0,
     author = {Teresa Alvarez},
     title = {Ultraweakly compact operators and dual spaces},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {7-A},
     year = {2004},
     pages = {697-711},
     zbl = {1179.47020},
     mrnumber = {2101660},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2004_8_7B_3_697_0}
}
Alvarez, Teresa. Ultraweakly compact operators and dual spaces. Bollettino dell'Unione Matematica Italiana, Tome 7-A (2004) pp. 697-711. http://gdmltest.u-ga.fr/item/BUMI_2004_8_7B_3_697_0/

[1] Álvarez, T.-Onieva, V. M., On operators factorizable through quasi-reflexive Banach spaces, Arch. Math. Vol., 48 (1987), 85-87. | MR 878013 | Zbl 0635.47017

[2] Castillo, J. M. F.-González, M., Three-space Problems in Banach Space Theory (Springer Lecture Notes in Math. 1667, 1997). | MR 1482801 | Zbl 0914.46015

[3] Clark, J. R., Coreflexive and somewhat reflexive Banach spaces, Proc. Amer. Math. Soc., 36 (1972), 421-427. | MR 308748 | Zbl 0264.46009

[4] Cross, R. W., Multivalued linear Operators (Marcel Dekker, New York, 1998.) | MR 1631548 | Zbl 0911.47002

[5] Davis, J.-Figiel, T.-Johnson, W.-Pelczynski, A., Factoring weakly compact operators, J. Funct. Anal., 17 (1976), 311-327. | MR 355536 | Zbl 0306.46020

[6] Dixmier, J., Sur un théorème de Banach, Duke Math. J.15 (1948), 1057-1071. | MR 27440 | Zbl 0031.36301

[7] Dunford, N.-Schwartz, J. T., Linear Operators Part I (Interscience, New York, 1958). | Zbl 0084.10402

[8] Van Dulst, D., Ultra weak topologies on Banach spaces, Proc. of the seminar on random series, convex sets and geometry of Banach spaces, Various Publ. Series, 24 (1975), 57-66. | MR 390724 | Zbl 0319.46010

[9] Vandulst, D., Reflexive and superreflexiveBanach spaces (Mathematisch Centrum, Amsterdam, 1978). | MR 513590 | Zbl 0412.46006

[10] Godofrey, G., Espaces de Banach: Existence et unicité de certains préduax, Ann. Inst. Fourier, Grenoble, no. 3 (1978). | MR 511815 | Zbl 0368.46015

[11] Goldberg, S., Unbounded Linear Operators (McGraw-Hill, New York, 1966). | MR 200692 | Zbl 0148.12501

[12] González, M.-Onieva, V. M., Semi-Fredholm operators and semigroups associated with some classical operator ideals, Proc. Royal Irish Acad., Ser. A, 88A (1988), 35-38. | MR 974281 | Zbl 0633.47029

[13] James, R. C., Some self-dual properties of normed linear spaces, Ann. of Math. Studies, 69 (1972), 159-175. | MR 454600 | Zbl 0233.46025

[14] Kalton, N. I.-Pelczynski, A., Kernels of surjections from L1-spaces with an applications to Sidon sets, Math. Ann.309, no. 1 (1997), 135-158. | MR 1467651 | Zbl 0901.46008

[15] Lindenstrauss, J.-Tzafriri, L., Classical Banach spaces I, sequence spaces (Springer-Verlag, New York, 1997). | MR 500056 | Zbl 0362.46013

[16] Neidinger, R. D., Properties of Tauberian Operators on Banach Spaces (Doctoral dissertation, University of Texas at Austin, 1984).

[17] Ostrovski, M. I., Total subspaces in dual Banach spaces which are not norming over any infinite dimensional subspace, Studia Math., 105 (1993), 37-49. | MR 1222187 | Zbl 0810.46016

[18] Rosenthal, H. P., On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators from Lpμ to Lrμ, J. Funct. Anal., 4 (1969), 176-214. | MR 250036 | Zbl 0185.20303

[19] Yang, K. W., The generalized Fredholm operators, Trans. Amer. Math. Soc., 216 (1976), 313-326. | MR 423114 | Zbl 0297.47027