We start from the following problem: given a function what can be said about the set of points in the range where level sets are «big» according to an opportune definition. This yields the necessity of an analysis of the structure of level sets of functions. We investigate the analogous problem for functions. These are in a certain way intermediate between and functions. The results involve a mixture of Real Analysis, Geometric Measure Theory and Classical Descriptive Set Theory.
Si parte dal seguente problema: data una funzione , cosa si può dire riguardo l'insieme dei punti nel codominio in cui gli insiemi di livello sono grandi secondo una opportuna definizione. Ciò porta alla necessità di analizzare la struttura degli insiemi di livello per funzioni di classe . Analogo problema viene affrontato per le funzioni di classe che sono in un certo senso intermedie fra quelle di classe e quelle di classe . I risultati coinvolgono strumenti di analisi reale, teoria geometrica della misura e teoria descrittiva classica degli insiemi.
@article{BUMI_2004_8_7B_3_637_0, author = {Emma D'Aniello}, title = {Investigation of smooth functions and analytic sets using fractal dimensions}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {7-A}, year = {2004}, pages = {637-646}, zbl = {1178.26005}, mrnumber = {2101655}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2004_8_7B_3_637_0} }
D'Aniello, Emma. Investigation of smooth functions and analytic sets using fractal dimensions. Bollettino dell'Unione Matematica Italiana, Tome 7-A (2004) pp. 637-646. http://gdmltest.u-ga.fr/item/BUMI_2004_8_7B_3_637_0/
[1] Über die Bairesche Kategorie gewisser Funktionenmengen, Studia Math., 3 (1931), 174-179. | Zbl 0003.29703
,[2] On the complementary intervals of a linear closed set of zero Lebesgue measure, J. London Math. Soc., 29 (1954), 449-459. | MR 64849 | Zbl 0056.27801
- ,[3] | Zbl 0872.26001
- - , Real Analysis, Prentice-Hall, New Jersey, 1997.[4] The level structure of a residual set of continuous functions, Trans. Amer. Math. Soc., 232 (1977), 307-321. | MR 476939 | Zbl 0372.46027
- ,[5] Differentiability through change of variables, Proc. Amer. Math. Soc., 61 (1976), 235-241. | MR 432831 | Zbl 0358.26006
- ,[6] On the existence of functions with perfect level sets, Z. Anal. Anwendungen, 19, no. 3 (2000), 847-853. | MR 1784134 | Zbl 0976.26002
- ,[7] functions, Hausdorff measures and analytic sets, Advances in Mathematics, 164 (2001), 117-143. | MR 1870514 | Zbl 0998.28003
- ,[8] Uncountable level sets of Lipschitz functions and analytic sets, Scientiae Mathematicae Japoncae, 6 (2002), 333-339. | MR 1922799 | Zbl 1018.28001
,[9] Level sets of Hölder functions and Hausdorff measures, Z. Anal. Anwendungen, 21, no. 3 (2002), 1-17. | MR 1929427 | Zbl 1035.26009
,[10] Level sets of a typical function, Proc. Amer. Math. Soc., 127 (1999), 2917-2922. | MR 1605944 | Zbl 0942.26011
- ,[11] | MR 217751
, Topology, Volume I, Academic Press, INC., New York, 1966.[12] -variation and transformation into functions, Indiana Univ. Math. J., 34, no. 2 (1985), 405-424. | MR 783923 | Zbl 0557.26004
- ,[13] Homeomorphisms of a segment and smoothness of a function, Mat. Zametki, 40, no. 3 (1986), 364-373. | MR 869927 | Zbl 0637.26006
,[14] Sur les fonctions non dérivables, Studia Math., 3 (1931), 92-94. | JFM 57.0305.04
,[15] Sur un problème concernant les fonctions continues, Fund. Math., 6 (1924), 161-169. | JFM 50.0186.01
- ,