Problema di trasporto e equazione di Cauchy per campi vettoriali a variazione limitata
Ambrosio, Luigi
Bollettino dell'Unione Matematica Italiana, Tome 7-A (2004), p. 529-543 / Harvested from Biblioteca Digitale Italiana di Matematica

In questa conferenza descrivo alcuni recenti sviluppi relativi al problema dell'unicità per l'equazione differenziale ordinaria e per l'equazione di continuità per campi vettoriali debolmente differenziabili. Descrivo infine un'applicazione di questi risultati a un sistema di leggi di conservazione.

In this talk I will illustrate some recent progress on the uniqueness problem for the transport equation and the ordinary differential equation associated to a weakly differentiable vector field. An application to a system of conservation laws will also be illustrated.

Publié le : 2004-10-01
@article{BUMI_2004_8_7B_3_529_0,
     author = {Luigi Ambrosio},
     title = {Problema di trasporto e equazione di Cauchy per campi vettoriali a variazione limitata},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {7-A},
     year = {2004},
     pages = {529-543},
     zbl = {1182.35083},
     mrnumber = {2101650},
     language = {it},
     url = {http://dml.mathdoc.fr/item/BUMI_2004_8_7B_3_529_0}
}
Ambrosio, Luigi. Problema di trasporto e equazione di Cauchy per campi vettoriali a variazione limitata. Bollettino dell'Unione Matematica Italiana, Tome 7-A (2004) pp. 529-543. http://gdmltest.u-ga.fr/item/BUMI_2004_8_7B_3_529_0/

[1] Aizenman, M., On vector fields as generators of flows: a counterexample to Nelson's conjecture, Ann. Math., 107 (1978), 287-296. | MR 482853 | Zbl 0394.28012

[2] Alberti, G., Rank-one properties for derivatives of functions with bounded variation, Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), 239-274. | MR 1215412 | Zbl 0791.26008

[3] Alberti, G.-Ambrosio, L., A geometric approach to monotone functions in Rn, Math. Z., 230 (1999), 259-316. | MR 1676726 | Zbl 0934.49025

[4] Almgren, F. J., The theory of varifolds - A variational calculus in the large, Princeton University Press, 1972.

[5] Ambrosio, L.-Fusco, N.-Pallara, D., Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, 2000. | MR 1857292 | Zbl 0957.49001

[6] Ambrosio, L., Transport equation and Cauchy problem for BV vector fields, In corso di stampa su Inventiones Math.. | Zbl 1075.35087

[7] Ambrosio, L.-De Lellis, C., Existence of solutions for a class of hyperbolic systems of conservation laws in several space dimensions, International Mathematical Research Notices, 41 (2003), 2205-2220. | MR 2000967 | Zbl 1061.35048

[8] Ambrosio, L.-Bouchut, F.-De Lellis, C., Well-posedness for a class of hyperbolic systems of conservation laws in several space dimensions, Di prossima pubblicazione su Comm. PDE, disponibile su http://cvgmt.sns.it. | Zbl 1072.35116

[9] Ambrosio, L.-Gigli, N.-Savaré, G., Gradient flows in metric spaces and in the Wasserstein space of probability measures, Libro di prossima pubblicazione a cura di Birkhäuser.

[10] Bouchut, F.-James, F., One dimensional transport equation with discontinuous coefficients, Nonlinear Analysis, 32 (1998), 891-933. | MR 1618393 | Zbl 0989.35130

[11] Bouchut, F., Renormalized solutions to the Vlasov equation with coefficients of bounded variation, Arch. Rational Mech. Anal., 157 (2001), 75-90. | MR 1822415 | Zbl 0979.35032

[12] Bressan, A., An ill posed Cauchy problem for a hyperbolic system in two space dimensions, Rend. Sem. Mat. Univ. Padova, 110 (2003), 103-117. | MR 2033003 | Zbl 1114.35123

[13] Capuzzo Dolcetta, I.-Perthame, B., On some analogy between different approaches to first order PDE's with nonsmooth coefficients, Adv. Math. Sci Appl., 6 (1996), 689-703. | MR 1411988 | Zbl 0865.35032

[14] Cellina, A., On uniqueness almost everywhere for monotonic differential inclusions, Nonlinear Analysis, TMA, 25 (1995), 899-903. | MR 1350714 | Zbl 0837.34023

[15] Cellina, A.-Vornicescu, M., On gradient flows, Journal of Differential Equations, 145 (1998), 489-501. | MR 1620979 | Zbl 0927.37007

[16] Colombini, F.-Lerner, N., Uniqueness of continuous solutions for BV vector fields, Duke Math. J., 111 (2002), 357-384. | MR 1882138 | Zbl 1017.35029

[17] Colombini, F.-Lerner, N., Uniqueness of L solutions for a class of conormal BV vector fields, Preprint, 2003. | MR 2126467

[18] Colombini, F.-Luo, T.-Rauch, J., Uniqueness and nonuniqueness for nonsmooth divergence-free transport, Preprint, 2003. | MR 2030717 | Zbl 1065.35089

[19] Dafermos, C., Hyperbolic conservation laws in continuum physics, Springer Verlag, 2000. | MR 1763936 | Zbl 0940.35002

[20] De Pauw, N., Non unicité des solutions bornées pour un champ de vecteurs BV en dehors d'un hyperplan, C. R. Math. Sci. Acad. Paris, 337 (2003), 249-252. | MR 2009116 | Zbl 1024.35029

[21] Di Perna, R. J.-Lions, P. L., Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98 (1989), 511-547. | MR 1022305 | Zbl 0696.34049

[22] Hauray, M., On Liouville transport equation with potential in BVloc, (2003) Di prossima pubblicazione su Comm. in PDE.

[23] Hauray, M., On two-dimensional Hamiltonian transport equations with Llocp coefficients, (2003) Di prossima pubblicazione su Ann. Nonlinear Analysis IHP. | Zbl 1028.35148

[24] Kantorovich, L. V., On the transfer of masses, Dokl. Akad. Nauk. SSSR, 37 (1942), 227-229.

[25] Keyfitz, B. L.-Kranzer, H. C., A system of nonstrictly hyperbolic conservation laws arising in elasticity theory, Arch. Rational Mech. Anal., 72 (1980), 219- 241. | MR 549642 | Zbl 0434.73019

[26] Lions, P. L., Sur les équations différentielles ordinaires et les équations de transport, C. R. Acad. Sci. Paris Sér. I, 326 (1998), 833-838. | MR 1648524 | Zbl 0919.34028

[27] Petrova, G.-Popov, B., Linear transport equation with discontinuous coefficients, Comm. PDE, 24 (1999), 1849-1873. | MR 1708110 | Zbl 0992.35104

[28] Poupaud, F.-Rascle, M., Measure solutions to the liner multidimensional transport equation with non-smooth coefficients, Comm. PDE, 22 (1997), 337-358. | MR 1434148 | Zbl 0882.35026

[29] Young, L. C., Lectures on the calculus of variations and optimal control theory, Saunders, 1969. | MR 259704 | Zbl 0177.37801