Bifurcation of free vibrations for completely resonant wave equations
Berti, Massimiliano ; Bolle, Philippe
Bollettino dell'Unione Matematica Italiana, Tome 7-A (2004), p. 519-528 / Harvested from Biblioteca Digitale Italiana di Matematica

We prove existence of small amplitude, 2p/v-periodic in time solutions of completely resonant nonlinear wave equations with Dirichlet boundary conditions for any frequency ω belonging to a Cantor-like set of positive measure and for a generic set of nonlinearities. The proof relies on a suitable Lyapunov-Schmidt decomposition and a variant of the Nash-Moser Implicit Function Theorem.

Dimostriamo l'esistenza di soluzioni di piccola ampiezza, 2π/ω-periodiche nel tempo, per equazioni delle onde nonlineari completamente risonanti, per frequenze ω in un insieme di Cantor di misura positiva e per un insieme generico di nonlinearità. La dimostrazione si basa su una opportuna decomposizione di Lyapunov-Schmidt e su una variante dei teoremi di funzione implicita alla Nash-Moser.

Publié le : 2004-06-01
@article{BUMI_2004_8_7B_2_519_0,
     author = {Massimiliano Berti and Philippe Bolle},
     title = {Bifurcation of free vibrations for completely resonant wave equations},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {7-A},
     year = {2004},
     pages = {519-528},
     zbl = {1182.35166},
     mrnumber = {2072952},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2004_8_7B_2_519_0}
}
Berti, Massimiliano; Bolle, Philippe. Bifurcation of free vibrations for completely resonant wave equations. Bollettino dell'Unione Matematica Italiana, Tome 7-A (2004) pp. 519-528. http://gdmltest.u-ga.fr/item/BUMI_2004_8_7B_2_519_0/

[1] Bambusi, D.-Paleari, S., Families of periodic solutions of resonant PDEs, J. Nonlinear Sci., 11 (2001), 69-87. | MR 1819863 | Zbl 0994.37040

[2] Berti, M.-Bolle, P., Periodic solutions of nonlinear wave equations with general nonlinearities, Comm. Math. Phys., 243 (2003), 315-328. | MR 2021909 | Zbl 1072.35015

[3] Berti, M.-Bolle, P., Multiplicity of periodic solutions of nonlinear wave equations, Nonlinear Analysis, 56 (2004), 1011-1046. | MR 2038735 | Zbl 1064.35119

[4] Berti, M.-Bolle, P., Cantor families of periodic solutions of completely resonant wave equations and the Nash-Moser theorem, preprint Sissa, 2004. | MR 2395214 | Zbl 1160.35476

[5] Bourgain, J., Periodic solutions of nonlinear wave equations, Harmonic analysis and partial differential equations, 69-97, Chicago Lectures in Math., Univ. Chicago Press, 1999. | MR 1743856 | Zbl 0976.35041

[6] Craig, W.-Wayne, C. E., Newton's method and periodic solutions of nonlinear wave equations, Comm. Pure Appl. Math., 46 (1993), 1409-1498. | MR 1239318 | Zbl 0794.35104

[7] Gentile, G.-Mastropietro, V.-Procesi, M., Periodic solutions for completely resonant nonlinear wave equations, preprint 2004. | Zbl 1094.35021

[8] Lidskij, B. V.-Shulman, E. I., Periodic solutions of the equation utt-uxx+u3=0, Funct. Anal. Appl., 22 (1988), 332-333. | MR 977006 | Zbl 0837.35012