We compute explicit presentations for the small Quantum Cohomology ring of some Fano threefolds which are obtained as one- or two-curve blow-ups from or the smooth quadric. Systematic usage of the associativity property of quantum product implies that only a very small and enumerative subset of Gromov- Witten invariants is needed. Then, for these threefolds the Dubrovin conjecture on the semisimplicity of Quantum Cohomology is proven by checking the computed Quantum Cohomology rings and by showing that a smooth Fano threefold with admits a complete exceptional set of the appropriate length. Details are contained in the preprint [4] and will be published elsewhere.
Nella presente nota si calcola una presentazione esplicita dell'anello di coomologia quantica «small» per alcune threefold di Fano, ottenute scoppiando una o due curve lisce in o nella quadrica liscia. Usando sistematicamente l'associatività del prodotto quantico, si rende necessario calcolare esplicitamente soltanto un sottoinsieme molto piccolo ed enumerativo della famiglia degli invarianti di Gromov-Witten. Successivamente, si mostra che tali varietà soddisfano la congettura di Dubrovin sulla semisemplicità della coomologia quantica, sia mediante una semplice verifica sulle presentazioni in precedenza calcolate, sia mostrando che una threefold di Fano liscia con ammette un sistema eccezionale completo di generatori per la categoria derivata dei fasci coerenti. I dettagli si trovano nel preprint [4] e saranno pubblicati altrove.
@article{BUMI_2004_8_7B_2_511_0, author = {Gianni Ciolli}, title = {Computing the quantum cohomology of some Fano threefolds and its semisimplicity}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {7-A}, year = {2004}, pages = {511-517}, zbl = {1182.14058}, mrnumber = {2072951}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2004_8_7B_2_511_0} }
Ciolli, Gianni. Computing the quantum cohomology of some Fano threefolds and its semisimplicity. Bollettino dell'Unione Matematica Italiana, Tome 7-A (2004) pp. 511-517. http://gdmltest.u-ga.fr/item/BUMI_2004_8_7B_2_511_0/
[1] Quantum Cohomology of some Fano threefolds, to appear in Advances in Geometry, 2002. | MR 2110460 | Zbl 1076.14077
- ,[2] Semisimple Quantum Cohomology and Blow-ups, Preprint arXiv:math.AG/0403260, 2004. | MR 2064316 | Zbl 1080.14063
,[3] (Semi)simple exercises in Quantum Cohomology, Preprint arXiv:math.AG/0103164, 2001. | MR 2112573
- ,[4] On the Quantum Cohomology of some Fano threefolds and a conjecture of Dubrovin, 2004, Preprint Dip. Mat. «U. Dini» n. 3/2004. | MR 2168069 | Zbl 1081.14075
,[5] Quantum cohomology of projective bundles over , International J. of Math., 11, no. 6 (2000), 761-797. | MR 1785517 | Zbl 0969.14038
- ,[6] Geometry and analytic theory of Frobenius manifolds, Proceedings of the International Congress of Mathematicians, Vol. II, Doc. Math. 1998, no. Extra Vol. II, Berlin, 1998, pp. 315-326. | MR 1648082 | Zbl 0916.32018
,[7] Notes on stable maps and quantum cohomology, Algebraic geometry - Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 45-96. | MR 1492534 | Zbl 0898.14018
- ,[8] Fano threefolds. I, Izv. Akad. Nauk SSSR Ser. Mat., 41, no. 3 (1977), 516-562, 717. | MR 463151 | Zbl 0363.14010
,[9] Fano threefolds. II, Izv. Akad. Nauk SSSR Ser. Mat., 42, no. 3 (1978), 506-549. | MR 503430 | Zbl 0407.14016
,[10] Classification of Fano -folds with , Manuscripta Math., 36, no. 2 (1981/82), 147-162. | MR 641971 | Zbl 0478.14033
- ,[11] Erratum to «classification of Fano 3-folds with », Manuscripta Math., 110 (2003), 407. | MR 1969009 | Zbl 0478.14033
- ,[12] Projective bundles, monoidal transformations, and derived categories of coherent sheaves, Russian Acad. Sci. Izv. Math., 41, no. 1 (1993), 133-141. | MR 1208153 | Zbl 0798.14007
,[13] Quantum cohomology of projective bundles over , Transactions of the Am. Math. Soc., 350, no. 9 (1998), 3615-3638. | MR 1422617 | Zbl 0932.14030
- ,[14] The Gromov-Witten invariants of symplectic toric manifolds, and their quantum cohomology ring, C. R. Acad. Sci. Paris Sér. I Math., 329, no. 8 (1999), 699-704. | MR 1724149 | Zbl 1004.14014
,