Almost symplectic structures and harmonic morphisms
Burel, Jean-Marie
Bollettino dell'Unione Matematica Italiana, Tome 7-A (2004), p. 493-507 / Harvested from Biblioteca Digitale Italiana di Matematica

In this paper, we introduce the notion of symplectic harmonic maps between tamed manifolds and establish some properties. In the case where the manifolds are almost Hermitian manifolds, we obtain a new method to contruct harmonic maps with minimal fibres. We finally present examples of such applications between projectives spaces.

In questo articolo, introduciamo la nozione di applicazione armonica simplettica fra varietà addomesticate e otteniamo qualche proprietà. Nel caso in cui le varietà siano quasi hermitiane, otteniamo un nuovo metodo per costruire applicazioni armoniche con fibre minimali. In fine, presentiamo un esempio di tali applicazioni fra spazi proiettivi.

Publié le : 2004-06-01
@article{BUMI_2004_8_7B_2_493_0,
     author = {Jean-Marie Burel},
     title = {Almost symplectic structures and harmonic morphisms},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {7-A},
     year = {2004},
     pages = {493-507},
     zbl = {1177.58012},
     mrnumber = {2072950},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2004_8_7B_2_493_0}
}
Burel, Jean-Marie. Almost symplectic structures and harmonic morphisms. Bollettino dell'Unione Matematica Italiana, Tome 7-A (2004) pp. 493-507. http://gdmltest.u-ga.fr/item/BUMI_2004_8_7B_2_493_0/

[1] Baird, P.-Eells, J., A conservation law for harmonic maps, Geometry Symp. Utrecht (1980), Springer Notes, 894 (1981), 1-25. | MR 655417 | Zbl 0485.58008

[2] Baird, P.-Gudmundsson, S., p-harmonic maps and minimal submanifolds, Math. Ann., 294 (1992), 611-624. | MR 1190447 | Zbl 0757.53031

[3] Baird, P.-Ou, Y.-L., Harmonic maps and morphisms from multilinear norm-preserving mappings, International. J. Math. Volume 8, 2 (1997), 187-211. | MR 1442435 | Zbl 0885.58013

[4] Burel, J.-M., Applications et morphismes harmoniques à valeurs dans une surface, Comptes Rendus de l'Académie des Sciences, Paris, t.332, Série I (2001), 441-446. | MR 1826632 | Zbl 1040.58005

[5] Eells, J.-Ferreira, M. J., On representing homotopy classes by harmonic maps, Bull. Lond. Math. Soc, 23, no. 2 (1991), 160-162. | MR 1122903 | Zbl 0704.58014

[6] Fuglede, B., Harmonic morphisms between Riemannian manifolds, Ann. Inst. Fourier, 28 (1978), 107-144. | MR 499588 | Zbl 0339.53026

[7] Gromov, M., Pseudo holomorphic curves in symplectic manifolds, Invent. Math., 82 (1985), 307-347. | Zbl 0592.53025

[8] Ishihara, T., A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto. Univ., 19 (1979), 215-229. | MR 545705 | Zbl 0421.31006

[9] Mo, X., Harmonic morphisms via deformation of metrics for horizontally conformal maps, in Harmonic Morphisms, Harmonic maps and related topics, Proceedings of a conference held in Brest, France 7th-11th of July 1997, 75-96, CRC Press (1999). | MR 1735681 | Zbl 0952.53031

[10] Pantilie, R., Harmonic morphisms with one dimensional fibres, International. J. Math., 10 (1999), 457-501. | MR 1697618 | Zbl 0966.53044

[11] Ville, M., Harmonic morphisms from Einstein 4-manifolds to Riemann surfaces, Internat. J. Math., 14 (2003), 327-337. | MR 1978451 | Zbl 1067.53052