On multivalued martingales, multimeasures and multivalued Radon-Nikodym property
Zohry, Mohamed
Bollettino dell'Unione Matematica Italiana, Tome 7-A (2004), p. 453-468 / Harvested from Biblioteca Digitale Italiana di Matematica

In this paper we prove a representation result for essentially bounded multivalued martingales with nonempty closed convex and bounded values in a real separable Banach space. Then we turn our attention to the interplay between multimeasures and multivalued Riesz representations. Finally, we give the multivalued Radon-Nikodym property.

Sia X uno spazio di Banach reale, separabile e KcX la classe dei sottoinsiemi non vuoti, chiusi, limitati e convessi di X. Si dimostra un risultato di rappresentazione per martingale essenzialmente limitate a valori in KcX. Quindi rivolgiamo la nostra attenzione al legame tra misure multivoche e rappresentazioni di Riesz a valori multivoci. Infine, diamo la versione multivoca del teorema di Radon-Nikodym.

Publié le : 2004-06-01
@article{BUMI_2004_8_7B_2_453_0,
     author = {Mohamed Zohry},
     title = {On multivalued martingales, multimeasures and multivalued Radon-Nikodym property},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {7-A},
     year = {2004},
     pages = {453-468},
     zbl = {1123.46302},
     mrnumber = {2072947},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2004_8_7B_2_453_0}
}
Zohry, Mohamed. On multivalued martingales, multimeasures and multivalued Radon-Nikodym property. Bollettino dell'Unione Matematica Italiana, Tome 7-A (2004) pp. 453-468. http://gdmltest.u-ga.fr/item/BUMI_2004_8_7B_2_453_0/

[1] Aumann, R. J., Integrals of set-valued functions, J. Math. Anal. Appl., 12 (1965), 1-12. | MR 185073 | Zbl 0163.06301

[2] Bourgin, R. D., Geometric aspects of convex sets with the Radon-Nikodym property, Lecture notes in Math., 993, Springer-Verlag, Berlin, 1983. | MR 704815 | Zbl 0512.46017

[3] Caponetti, D., On Convergence of Multivalued Martingales and Uniform Amarts indexed by Directed Sets, Boll. Un. Mat. Ital. B (7), 4 (1990), 553-565. | MR 1073634 | Zbl 0721.60053

[4] Castaing, C.-Valadier, M., Convex Analysis and measurable multifunctions, Lecture notes in Math., 580, Springer-Verlag, Berlin, 1977. | MR 467310 | Zbl 0346.46038

[5] Chatterji, S. D., Martingales of Banach-valued random variables, Bull. Amer. Math. Soc., 66 (1960), 395-398. | MR 119242 | Zbl 0102.13601

[6] Chatterji, S. D., A note on the convergence of Banach space-valued martingales, Math. Ann., 153 (1964), 142-149. | MR 161376 | Zbl 0125.36703

[7] Chatterji, S. D., Martingale convergence and the Radon-Nikodym theorem in Banach spaces, Math. Scand., 22 (1968), 21-41. | MR 246341 | Zbl 0175.14503

[8] Chatterji, S. D., Vector values martingales and their applications, Proc. of the conf. in Probability Theory in Banach spaces, Oberwolfah (1975), Lecture Notes in Math, 256, Springer, Berlin (1976), 33-51. | MR 517905 | Zbl 0336.60049

[9] Coste, A., La Propriété de Radon-Nikodym en intégration multivoque, C. R. Acad. Sci. Paris, 280 (1975), 1515-1518. | MR 374371 | Zbl 0313.28007

[10] Coste, A., Contribution à la Théorie de l'intégration multivoque, Thèse de Doctorat d'Etat, Université Paris VI (1977).

[11] Dekorvin, A.-Kleyle, R., A convergence theorem for convex set valued supermartingales, Stoch. Anal. Appl., 3 (1985), 433-445. | MR 808943 | Zbl 0575.60042

[12] Ezzaki, E., A general dominated convergence theorem for unbounded randon sets, Bull. Ac. Pol. Sc. Math., 44, 3 (1996). | MR 1419408 | Zbl 0879.60049

[13] Hiai, F.-Umegaki, H., Integrals, Conditional expectation, and martingales of multivalued functions, J. Multivariate Anal., 7 (1977), 149-182. | MR 507504 | Zbl 0368.60006

[14] Hiai, F.-Umegaki, H., Radon-Nikodym theorems for set-valued measures, J. Multivariate Anal., 8 (1978), 96-118. | MR 583862 | Zbl 0384.28006

[15] Himmelberg, C. J., Mesurable relations, Fund. Math., 87 (1975), 53-72. | MR 367142 | Zbl 0296.28003

[16] Ioffe, A. D.-Tihomiron, V. M., Uspehi Math., 23, 6 (1968), 51-116. | Zbl 0167.42202

[17] Luu, D. Q., Quelques résultats de représentation des amars uniformes multivoques, C. R. Acad. Sci. Paris, 300 (1985), 63-65. | MR 777611 | Zbl 0582.60056

[18] Neveu, J., Convergence presque sûre de martingales multivoques, Ann. Inst. H. Poincaré, 8, 1 (1972), 1-7. | MR 331504 | Zbl 0235.60010

[19] Zohry, M., Characterization of Set-Valued Conditional Expectation for a class of Multivalued Random Variables, Preprint, (2001). | MR 2255880 | Zbl 1110.60002