Fibred closed braids with disc-band fibre surfaces
Rampichini, Marta
Bollettino dell'Unione Matematica Italiana, Tome 7-A (2004), p. 433-451 / Harvested from Biblioteca Digitale Italiana di Matematica

A classical result by Stallings provides a necessary and sufficient condition to decide whether a given embedded surface S is a fibre in S3-S. In this paper it is described how to find a candidate fibre surface for a a link presented as a closed braid. Also it is described an implemented algorithm to find the main ingredients of the necessary and sufficient condition of Stallings, namely presentations of the fundamental groups of the surface and of its complement in S3, and an explicit expression of the homomorphism induced in homotopy by the push-off map. The paper ends with a discussion of the particular properties of the presentation of π1S3SW.

Un risultato classico di Stallings fornisce una condizione necessaria e sufficiente per stabilire se una data superficie immersa senza autointersezioni in S3 è una fibra per S3-S. In questo articolo si descrive come trovare una possibile fibra per un link presentato come treccia chiusa. Si descrive anche un algoritmo, implementato al calcolatore, che permette di trovare i principali ingredienti per verificare la condizione necessaria e sufficiente di Stallings, cioè una presentazione del gruppo fondamentale della superficie e del suo complementare in S3, e una espressione esplicita dell'omomorfismo indotto in omotopia dalla mappa di push-off. L'articolo termina con una discussione di particolari proprietà della presentazione del gruppo π1S3SW.

Publié le : 2004-06-01
@article{BUMI_2004_8_7B_2_433_0,
     author = {Marta Rampichini},
     title = {Fibred closed braids with disc-band fibre surfaces},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {7-A},
     year = {2004},
     pages = {433-451},
     zbl = {1150.57004},
     mrnumber = {2072946},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2004_8_7B_2_433_0}
}
Rampichini, Marta. Fibred closed braids with disc-band fibre surfaces. Bollettino dell'Unione Matematica Italiana, Tome 7-A (2004) pp. 433-451. http://gdmltest.u-ga.fr/item/BUMI_2004_8_7B_2_433_0/

[1] Birman, J. S., Braids, links and mapping class groups, Annals of Math. Studies84 (1974), Princeton Univ. Press. | MR 375281 | Zbl 0305.57013

[2] Birman, J. S.-Ko, K. H.-Lee, S. J., A new approach to the word and conjugacy problems in the braid groups, Adv. in Math., 139 (1998), 322-353. | MR 1654165 | Zbl 0937.20016

[3] Birman, J. S.-Menasco, W. W., Studying links via closed braids II: On a theorem of Bennequin, Top. Appl., 40 (1991), 71-82. | MR 1114092 | Zbl 0722.57001

[4] Birman, J. S.-Menasco, W. W., Studying links via closed braids VI: A non-finiteness theorem, Pacific J. of Math., 156 (1992), 265-285. | MR 1186805 | Zbl 0739.57002

[5] Birman, J. S.-Williams, R. F., Knotted periodic orbits in dynamical systems, I: Lorenz's equations, Top., 22 (1983), 47-82. | MR 682059 | Zbl 0507.58038

[6] Eisenbud, D.-Neumann, W., Three-dimensional link theory and invariants of plane curve singularities, Annals of Math. Stud.110, Princeton Univ. Press (1985). | MR 817982 | Zbl 0628.57002

[7] Gabai, D., Detecting fibred links in S3, Comment. Math. Helvetici, 61 (1986), 519-555. | MR 870705 | Zbl 0621.57003

[8] Gabai, D., Genera of the arborescent links, Memoirs Amer. Math. Soc., 59 (1986), 1-98. | MR 823442 | Zbl 0585.57003

[9] Gabai, D., Foliations and genera of links, Top., 23 (1982), 381-394. | MR 780731 | Zbl 0567.57021

[10] Harer, J., How to construct all fibered knots and links, Top., 21 (1982), 263-280. | MR 649758 | Zbl 0504.57002

[11] Ko, K. H.-Lee, S. J., Genera of some clesed 4-braids, Top. Appl., 78 (1997), 61-77. | MR 1465025 | Zbl 0879.57006

[12] Lyndon, R. C.-Schupp, P. E., Combinatorial Group Theory, Springer, 1977. | MR 577064 | Zbl 0368.20023

[13] Milnor, J., Singular points of complex hypersurfaces, Annals of Math. Studies61. | Zbl 0184.48405

[14] Montesinos-Amilibia, J. M.-Morton, H. R., Fibred links from closed braids, Proc. London Math. Soc. (3), 62 (1991), 167-201. | MR 1078219 | Zbl 0673.57010

[15] Morton, H. R., Infinitely many fibred knots having the same Alexander polynomial, Top.,7 (1978), 101-104. | MR 486796 | Zbl 0383.57005

[16] Oertel, U., HOMOLOGY BRANCHED SURFACES: THURSTON'S NORM ON H2M3, in Low dimensional topology and Kleinian groups, London Math. Soc. Lecture Note Ser.112 (1986) 253-272. | MR 903869 | Zbl 0628.57011

[17] Rampichini, M., Exchangeable fibred links, doctoral thesis, Univ. of Milan, Italy (1998).

[18] Rolfsen, D., Knots and links, Math. Lecture Series7 (1976), Publish or Perish Inc., Berkeley. | MR 515288 | Zbl 0339.55004

[19] Rudolph, L., Braided surfaces and Seifert ribbons for closed braids, Comment. Math. Helvetici, 58 (1983), 1-37. | MR 699004 | Zbl 0522.57017

[20] Rudolph, L., Construction of quasipositive knots and links, I, in Noeuds, tresses et singularités, L'einsegnement Mathematique, 31 (1983), 233-245. | MR 728589 | Zbl 0557.57002

[21] Rudolph, L., Special positions for surface bounded by closed braids, Rev. Mat. Iberoamericana, 1 (1985), 93-133. | MR 836285 | Zbl 0603.57004

[22] Rudolph, L., Quasipositive plumbing (Construction of quasipositive knots and links, V), Proc. Amer. Math. Soc., 126 (1998), 257-267. | MR 1452826 | Zbl 0888.57010

[23] Stallings, J. R., On fibering certain 3-manifolds, in Topology of 3-manifolds and related topics, ed. M. K. Fort, Jr., Prentice-Hall inc, 1962, 95-100. | MR 158375

[24] Stallings, J. R., Constructions of fibred knots and links, Proc. Symp. in Pure Math., AMS32 part 2 (1978), 55-60. | MR 520522 | Zbl 0394.57007

[25] Tollefson, J. L.-Wang, N., Taut normal surfaces, Topology, 35 (1996), 55-75. | MR 1367275 | Zbl 0868.57022

[26] Xu, P., The genus of closed 3-braids, J. Knot Theory Ram., 1 (1992), 303-326. | MR 1180404 | Zbl 0773.57007