In this paper, we are concerned with the following problem: given a set of smooth vector fields on , we ask whether there exists a homogeneous Carnot group such that is a sub-Laplacian on . We find necessary and sufficient conditions on the given vector fields in order to give a positive answer to the question. Moreover, we explicitly construct the group law i as above, providing direct proofs. Our main tool is a suitable version of the Campbell-Hausdorff formula. Finally, we exhibit several non-trivial examples of our construction.
In questo articolo ci occupiamo del seguente problema: data una famiglia di campi vettoriali regolari su , ci chiediamo se esiste un gruppo omogeneo di Carnot tale che sia un sub-Laplaciano su . A tale proposito troviamo condizioni necessarie e sufficienti sugli assegnati campi vettoriali affinchè la risposta alla suddetta domanda sia positiva. Inoltre esibiamo una costruzione esplicita della legge di gruppo i che verifica i requisiti di cui sopra, fornendo dimostrazioni dirette. La prova è essenzialmente basata su una opportuna versione della formula di Campbell-Hausdorff. Per finire, mostriamo svariati esempi non banali del nostro metodo costruttivo.
@article{BUMI_2004_8_7B_1_79_0, author = {Andrea Bonfiglioli}, title = {Homogeneous Carnot groups related to sets of vector fields}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {7-A}, year = {2004}, pages = {79-107}, zbl = {1178.35140}, mrnumber = {2044262}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2004_8_7B_1_79_0} }
Bonfiglioli, Andrea. Homogeneous Carnot groups related to sets of vector fields. Bollettino dell'Unione Matematica Italiana, Tome 7-A (2004) pp. 79-107. http://gdmltest.u-ga.fr/item/BUMI_2004_8_7B_1_79_0/
[1] 739 (2002). | MR 1878341 | Zbl 0994.22006
, Sub-Laplacians with drift on Lie groups of polynomial volume growth, Mem. Amer. Math. Soc.,[2] A matrix Lie group of Carnot type for filiform sub-Riemannian structures and its application to control systems in chained form, (ed.) et al., Proceedings of the summer school on differential geometry, Coimbra, Portugal, September 1999. | MR 1859942 | Zbl 0990.93022
,[3] A note on one dimensional symmetry in Carnot groups, Atti Accad. Naz. Lincei, to appear. | MR 1949145 | Zbl pre02216756
- ,[4] Liouville-type theorems for real sub-Laplacians, Manuscripta Math., 105 (2001), 111-124. | MR 1885817 | Zbl 1016.35014
- ,[5] Maximum Principle on unbounded domains for sub-Laplacians: a Potential Theory approach, Proc. Amer. Math. Soc., 130 (2002), 2295-2304. | MR 1896411 | Zbl 1165.35331
- ,[6] Subharmonic functions on Carnot groups, Math. Ann., to appear. | MR 1957266 | Zbl 1017.31003
- ,[7] Uniform Gaussian estimates of the fundamental solutions for heat operators on Carnot groups, Adv. Differential Equations, to appear. | MR 1919700 | Zbl 1036.35061
- - ,[8] Families of diffeomorphic sub-Laplacians and free Carnot groups, Forum Math., to appear. | MR 2050190 | Zbl 1065.35102
- ,[9] Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble), 19 (1969), 277-304. | MR 262881 | Zbl 0176.09703
,[10] | MR 979493 | Zbl 0672.22001
, Lie Groups and Lie Algebras, Chapters 1-3, Elements of Mathematics, Springer-Verlag, Berlin, 1989.[11] estimates for nonvariational hypoelliptic operators with VMO coefficients, Trans. Amer. Math. Soc., 352 (2000), 781-822. | MR 1608289 | Zbl 0935.35037
- ,[12] Regularity for quasilinear equations and -quasiconformal maps in Carnot groups, Math. Ann., 313 (1999), 263-295. | MR 1679786 | Zbl 0927.35024
,[13] 18Cambridge University Press, Cambridge, 1990. | MR 1070979 | Zbl 0704.22007
- , Representations of nilpotent Lie groups and their applications (Part I: Basic theory and examples), Cambridge Studies in Advanced Mathematics,[14] Some properties of the Campbell Baker Hausdorff series, Linear Multilinear Algebra, 29 (1991), 207-224. | MR 1119454 | Zbl 0728.22008
- - ,[15] An elementary proof of the Baker-Campbell-Hausdorff-Dynkin formula, Math. Z., 143 (1975), 209-211. | MR 399196 | Zbl 0298.22010
,[16] Extending the Campbell-Hausdorff multiplication, Geom. Dedicata, 46 (1993), 35-45. | MR 1214464 | Zbl 0778.17002
,[17] Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat., 13 (1975), 161-207. | MR 494315 | Zbl 0312.35026
,[18] 28Princeton University Press, Princeton, N.J., 1982. | MR 657581 | Zbl 0508.42025
- , Hardy spaces on homogeneous groups, Mathematical Notes,[19] A local doubling formula for the harmonic measure associated with sub-elliptic operators, preprint (2001).
- ,[20] Rectifiability and perimeter in the Heisenberg group, Math. Ann., 321 (2001), 479-531. | MR 1871966 | Zbl 1057.49032
- - ,[21] Regularity near the characteristic set in the non-linear Dirichlet problem and conformal geometry of sub-Laplacians on Carnot groups, Math. Ann., 318 (2000), 453-516. | MR 1800766 | Zbl 1158.35341
- ,[22] Symmetry properties of positive entire solutions of Yamabe-type equations on groups of Heisenberg type, Duke Math. J., 106 (2001), 411-448. | MR 1813232 | Zbl 1012.35014
- ,[23] Models for free nilpotent Lie algebras, J. Algebra, 135 (1990), 177-191. | MR 1076084 | Zbl 0717.17006
- ,[24] A note on Carnot geodesics in nilpotent Lie groups, J. Dyn. Control Syst., 1 (1995), 535-549. | MR 1364562 | Zbl 0941.53029
- ,[25] | MR 235065 | Zbl 0192.35902
- , Lie groups. Lie algebras, Notes on Mathematics and Its Applications, New York-London-Paris: Gordon and Breach, 1968.[26] Quasiregular maps on Carnot groups, J. Geom. Anal., 7 (1997), 109-148. | MR 1630785 | Zbl 0905.30018
- ,[27] 27, Paris: Dunod, 1968. | Zbl 0157.36502
, La structure de groupes de Lie, Monographies universitaires de mathématique,[28] Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147-171. | MR 222474 | Zbl 0156.10701
,[29] 10, New York-London: Wiley, 1962. | MR 143793 | Zbl 0121.27504
, Lie Algebras, Interscience Tracts in Pure and Applied Mathematics,[30] Zufällige Bewegungen, Ann. of Math., 35 (1934), 116-117. | JFM 60.1159.01 | MR 1503147
,[31] On a class of hypoelliptic evolution operators, Rend. Sem. Mat. Univ. Politec. Torino, 52 (1994), 29-63. | MR 1289901 | Zbl 0811.35018
- ,[32] A nonintegrable sub-Riemannian geodesic flow on a Carnot group, J. Dyn. Control Syst., 3 (1997), 519-530. | MR 1481625 | Zbl 0941.53046
- - ,[33] Regular domains in homogeneous spaces, preprint (2001).
- ,[34] Surface measures in Carnot-Carathéodory spaces, Calc. Var. Partial Diff. Eq., 13 (2001), 339-376. | MR 1865002 | Zbl 1032.49045
- ,[35] The Campbell-Hausdorff theorem for elliptic operators and a related trace formula, Duke Math. J., 79 (1995), 687-722. | MR 1355181 | Zbl 0854.35137
,[36] The Baker-Campbell-Hausdorff formula and nested commutator identities, J. Math. Phys., 32 (1991), 419-424. | MR 1088363 | Zbl 0725.47052
,[37] Hypoelliptic differential operators and nilpotent groups, Acta Math., 137 (1976), 247-320. | MR 436223 | Zbl 0346.35030
- ,[38] The Campbell-Baker-Hausdorff-Dynkin formula and solutions of differential equations, J. Funct. Anal., 72 (1987), 320-345. | MR 886816 | Zbl 0623.34058
,[39] Cyclic relations and the Goldberg coefficients in the Campbell-Baker-Hausdorff formula, Proc. Am. Math. Soc., 86 (1982), 12-14. | MR 663855 | Zbl 0497.17002
,[40] 102, Springer-Verlag, New York, 1984. | MR 746308 | Zbl 0955.22500
, Lie groups, Lie algebras and their representations, Graduate Texts in Mathematics[41] 100, Cambridge University Press, Cambridge, 1992. | MR 1218884 | Zbl 0813.22003
- - , Analysis and geometry on groups, Cambridge Tracts in Mathematics