Homogeneous Carnot groups related to sets of vector fields
Bonfiglioli, Andrea
Bollettino dell'Unione Matematica Italiana, Tome 7-A (2004), p. 79-107 / Harvested from Biblioteca Digitale Italiana di Matematica

In this paper, we are concerned with the following problem: given a set of smooth vector fields X1,,Xm on RN, we ask whether there exists a homogeneous Carnot group G=(RN,,δλ) such that iXi2 is a sub-Laplacian on G. We find necessary and sufficient conditions on the given vector fields in order to give a positive answer to the question. Moreover, we explicitly construct the group law i as above, providing direct proofs. Our main tool is a suitable version of the Campbell-Hausdorff formula. Finally, we exhibit several non-trivial examples of our construction.

In questo articolo ci occupiamo del seguente problema: data una famiglia di campi vettoriali regolari X1,,Xm su RN, ci chiediamo se esiste un gruppo omogeneo di Carnot G=(RN,,δλ) tale che iXi2 sia un sub-Laplaciano su G. A tale proposito troviamo condizioni necessarie e sufficienti sugli assegnati campi vettoriali affinchè la risposta alla suddetta domanda sia positiva. Inoltre esibiamo una costruzione esplicita della legge di gruppo i che verifica i requisiti di cui sopra, fornendo dimostrazioni dirette. La prova è essenzialmente basata su una opportuna versione della formula di Campbell-Hausdorff. Per finire, mostriamo svariati esempi non banali del nostro metodo costruttivo.

Publié le : 2004-02-01
@article{BUMI_2004_8_7B_1_79_0,
     author = {Andrea Bonfiglioli},
     title = {Homogeneous Carnot groups related to sets of vector fields},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {7-A},
     year = {2004},
     pages = {79-107},
     zbl = {1178.35140},
     mrnumber = {2044262},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2004_8_7B_1_79_0}
}
Bonfiglioli, Andrea. Homogeneous Carnot groups related to sets of vector fields. Bollettino dell'Unione Matematica Italiana, Tome 7-A (2004) pp. 79-107. http://gdmltest.u-ga.fr/item/BUMI_2004_8_7B_1_79_0/

[1] Alexopoulos, G. K., Sub-Laplacians with drift on Lie groups of polynomial volume growth, Mem. Amer. Math. Soc., 739 (2002). | MR 1878341 | Zbl 0994.22006

[2] Altafini, C., A matrix Lie group of Carnot type for filiform sub-Riemannian structures and its application to control systems in chained form, D'Azevedo Breda, A. M. (ed.) et al., Proceedings of the summer school on differential geometry, Coimbra, Portugal, September 1999. | MR 1859942 | Zbl 0990.93022

[3] Birindelli, I.-Lanconelli, E., A note on one dimensional symmetry in Carnot groups, Atti Accad. Naz. Lincei, to appear. | MR 1949145 | Zbl pre02216756

[4] Bonfiglioli, A.-Lanconelli, E., Liouville-type theorems for real sub-Laplacians, Manuscripta Math., 105 (2001), 111-124. | MR 1885817 | Zbl 1016.35014

[5] Bonfiglioli, A.-Lanconelli, E., Maximum Principle on unbounded domains for sub-Laplacians: a Potential Theory approach, Proc. Amer. Math. Soc., 130 (2002), 2295-2304. | MR 1896411 | Zbl 1165.35331

[6] Bonfiglioli, A.-Lanconelli, E., Subharmonic functions on Carnot groups, Math. Ann., to appear. | MR 1957266 | Zbl 1017.31003

[7] Bonfiglioli, A.-Lanconelli, E.-Uguzzoni, F., Uniform Gaussian estimates of the fundamental solutions for heat operators on Carnot groups, Adv. Differential Equations, to appear. | MR 1919700 | Zbl 1036.35061

[8] Bonfiglioli, A.-Uguzzoni, F., Families of diffeomorphic sub-Laplacians and free Carnot groups, Forum Math., to appear. | MR 2050190 | Zbl 1065.35102

[9] Bony, J.-M., Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble), 19 (1969), 277-304. | MR 262881 | Zbl 0176.09703

[10] Bourbaki, N., Lie Groups and Lie Algebras, Chapters 1-3, Elements of Mathematics, Springer-Verlag, Berlin, 1989. | MR 979493 | Zbl 0672.22001

[11] Bramanti, M.-Brandolini, L., Lp estimates for nonvariational hypoelliptic operators with VMO coefficients, Trans. Amer. Math. Soc., 352 (2000), 781-822. | MR 1608289 | Zbl 0935.35037

[12] Capogna, L., Regularity for quasilinear equations and 1-quasiconformal maps in Carnot groups, Math. Ann., 313 (1999), 263-295. | MR 1679786 | Zbl 0927.35024

[13] Corwin, L. J.-Greenleaf, F. P., Representations of nilpotent Lie groups and their applications (Part I: Basic theory and examples), Cambridge Studies in Advanced Mathematics, 18Cambridge University Press, Cambridge, 1990. | MR 1070979 | Zbl 0704.22007

[14] Day, J.-So, W.-Thompson, R. C., Some properties of the Campbell Baker Hausdorff series, Linear Multilinear Algebra, 29 (1991), 207-224. | MR 1119454 | Zbl 0728.22008

[15] Djoković, D. Ž., An elementary proof of the Baker-Campbell-Hausdorff-Dynkin formula, Math. Z., 143 (1975), 209-211. | MR 399196 | Zbl 0298.22010

[16] Eggert, A., Extending the Campbell-Hausdorff multiplication, Geom. Dedicata, 46 (1993), 35-45. | MR 1214464 | Zbl 0778.17002

[17] Folland, G. B., Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat., 13 (1975), 161-207. | MR 494315 | Zbl 0312.35026

[18] Folland, G. B.-Stein, E. M., Hardy spaces on homogeneous groups, Mathematical Notes, 28Princeton University Press, Princeton, N.J., 1982. | MR 657581 | Zbl 0508.42025

[19] Franchi, B.-Ferrari, F., A local doubling formula for the harmonic measure associated with sub-elliptic operators, preprint (2001).

[20] Franchi, B.-Serapioni, R.-Serra Cassano, F., Rectifiability and perimeter in the Heisenberg group, Math. Ann., 321 (2001), 479-531. | MR 1871966 | Zbl 1057.49032

[21] Garofalo, N.-Vassilev, D., Regularity near the characteristic set in the non-linear Dirichlet problem and conformal geometry of sub-Laplacians on Carnot groups, Math. Ann., 318 (2000), 453-516. | MR 1800766 | Zbl 1158.35341

[22] Garofalo, N.-Vassilev, D., Symmetry properties of positive entire solutions of Yamabe-type equations on groups of Heisenberg type, Duke Math. J., 106 (2001), 411-448. | MR 1813232 | Zbl 1012.35014

[23] Grayson, M.-Grossman, R., Models for free nilpotent Lie algebras, J. Algebra, 135 (1990), 177-191. | MR 1076084 | Zbl 0717.17006

[24] Golé, C.-Karidi, R., A note on Carnot geodesics in nilpotent Lie groups, J. Dyn. Control Syst., 1 (1995), 535-549. | MR 1364562 | Zbl 0941.53029

[25] Hausner, M.-Scwartz, J. T., Lie groups. Lie algebras, Notes on Mathematics and Its Applications, New York-London-Paris: Gordon and Breach, 1968. | MR 235065 | Zbl 0192.35902

[26] Heinonen, J.-Holopainen, I., Quasiregular maps on Carnot groups, J. Geom. Anal., 7 (1997), 109-148. | MR 1630785 | Zbl 0905.30018

[27] Hochschild, G., La structure de groupes de Lie, Monographies universitaires de mathématique, 27, Paris: Dunod, 1968. | Zbl 0157.36502

[28] Hörmander, L., Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147-171. | MR 222474 | Zbl 0156.10701

[29] Jacobson, N., Lie Algebras, Interscience Tracts in Pure and Applied Mathematics, 10, New York-London: Wiley, 1962. | MR 143793 | Zbl 0121.27504

[30] Kolmogorov, A. N., Zufällige Bewegungen, Ann. of Math., 35 (1934), 116-117. | JFM 60.1159.01 | MR 1503147

[31] Lanconelli, E.-Polidoro, S., On a class of hypoelliptic evolution operators, Rend. Sem. Mat. Univ. Politec. Torino, 52 (1994), 29-63. | MR 1289901 | Zbl 0811.35018

[32] Montgomery, R.-Shapiro, M.-Stolin, A., A nonintegrable sub-Riemannian geodesic flow on a Carnot group, J. Dyn. Control Syst., 3 (1997), 519-530. | MR 1481625 | Zbl 0941.53046

[33] Monti, R.-Morbidelli, D., Regular domains in homogeneous spaces, preprint (2001).

[34] Monti, R.-Serra Cassano, F., Surface measures in Carnot-Carathéodory spaces, Calc. Var. Partial Diff. Eq., 13 (2001), 339-376. | MR 1865002 | Zbl 1032.49045

[35] Okikiolu, K., The Campbell-Hausdorff theorem for elliptic operators and a related trace formula, Duke Math. J., 79 (1995), 687-722. | MR 1355181 | Zbl 0854.35137

[36] Oteo, J. A., The Baker-Campbell-Hausdorff formula and nested commutator identities, J. Math. Phys., 32 (1991), 419-424. | MR 1088363 | Zbl 0725.47052

[37] Rothschild, L. P.-Stein, E. M., Hypoelliptic differential operators and nilpotent groups, Acta Math., 137 (1976), 247-320. | MR 436223 | Zbl 0346.35030

[38] Strichartz, R. S., The Campbell-Baker-Hausdorff-Dynkin formula and solutions of differential equations, J. Funct. Anal., 72 (1987), 320-345. | MR 886816 | Zbl 0623.34058

[39] Thompson, R. C., Cyclic relations and the Goldberg coefficients in the Campbell-Baker-Hausdorff formula, Proc. Am. Math. Soc., 86 (1982), 12-14. | MR 663855 | Zbl 0497.17002

[40] Varadarajan, V. S., Lie groups, Lie algebras and their representations, Graduate Texts in Mathematics102, Springer-Verlag, New York, 1984. | MR 746308 | Zbl 0955.22500

[41] Varopoulos, N. T.-Saloff-Coste, L.-Coulhon, T., Analysis and geometry on groups, Cambridge Tracts in Mathematics100, Cambridge University Press, Cambridge, 1992. | MR 1218884 | Zbl 0813.22003