Jordan -pairs appear, in a natural way, in the study of Lie -triple systems ([3]). Indeed, it is shown in [4, Th. 3.1] that the problem of the classification of Lie -triple systems is reduced to prove the existence of certain -algebra envelopes, and it is also shown in [3] that we can associate topologically simple nonquadratic Jordan -pairs to a wide class of Lie -triple systems and then the above envelopes can be obtained from a suitable classification, in terms of associative -pairs, of these pairs. In this paper we give a classification theorem for topologically simple non-quadratic Jordan -pairs in terms of associative -pairs and certain of their anti-isomorphisms. Some consequences of this classification are also stated.
Il concetto di -coppia di Jordan, appare, in modo naturale, nello studio degli -sistemi tripli di Lie ([3]). Di fatto, nel [4, Th. 3.1] si prova che il problema della classificazione degli -sistemi tripli di Lie si riduce a provare l'esistenza di certi inviluppi di -algebre e in [3] si prova anche che è possibile associare - coppie topologicamente semplici non quadratiche di Jordan ad un'ampia classe di -sistemi tripli di Lie e che poi gli inviluppi precedenti possono essere ottenuti da un'opportuna classificazione, in termini di -coppie associative, di queste coppie. In questo lavoro viene dato un teorema di classificazione delle -coppie topologicamente semplici non quadratiche di Jordan in termini di -coppie associative e di certuni loro anti-isomorfismi. Vengono anche enunciate alcune conseguenze di questa classificazione.
@article{BUMI_2004_8_7B_1_61_0, author = {A. J. Calder\'on Mart\'\i n and C. Mart\'\i n Gonz\'alez}, title = {A structure theory for Jordan $H^*$-pairs}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {7-A}, year = {2004}, pages = {61-77}, zbl = {1118.46059}, mrnumber = {2044261}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2004_8_7B_1_61_0} }
Calderón Martín, A. J.; González, C. Martín. A structure theory for Jordan $H^*$-pairs. Bollettino dell'Unione Matematica Italiana, Tome 7-A (2004) pp. 61-77. http://gdmltest.u-ga.fr/item/BUMI_2004_8_7B_1_61_0/
[1] Primitive Jordan Pairs and Triple Systems, J. Algebra, 184, no. 2 (1996), 632-678. | MR 1409234 | Zbl 0857.17032
- ,[2] Dual pairs techniques in -theories, J. Pure Appl. Algebra, 133 (1998), 59-63. | MR 1653695 | Zbl 0962.17021
- ,[3] On -triples and Jordan -pairs, Ring theory and Algebraic Geometry, ( , , eds.) Marcel Dekker, Inc. Chapter 4 (2001), 87-94. | MR 1844085
- ,[4] Hilbert space methods in the theory of Lie triple systems, Recent Progress in Functional Analysis, , , , (ed.) in the series North-Holland Math. Studies (2001), 309-319. | MR 1861767
- ,[5] On Associative and Jordan -pairs, Int. J. Math. Game Theory Algebra, 11, no. 4 (2001), 1-12. | MR 1859391 | Zbl 1034.46048
- ,[6] Isomorphisms of -triple systems, Ann. della Scuola Norm. Sup. Pisa Cl. Sci. 4, no. 4 (1992), 507-514. | MR 1205882 | Zbl 0805.46055
- ,[7] Associative -triple systems, In Nonassociative Algebraic Models. Nova Science Publishers, and Eds. (1992), 45-67. | MR 1189612 | Zbl 0794.46044
- ,[8] The Centroid and Metacentroid of an -triple system., Bull. Soc. Math. Belg, 45, Fac. 1 et 2 (1993), 85-93. | MR 1316233
- ,[9] Jordan -triple systems, in Nonassociative Algebras and its Applications, editor, Kluwer Academic Publishers (1994), 66-72. | MR 1338159
- ,[10] Ternary -algebras, Boll. Un. Mat. Ital. B (7), 6, no. 1 (1992), 217-228. | MR 1164947
- - ,[11] Special Jordan -triple systems, Comm. Alg, 28, no. 10 (2000), 4699-4706. | MR 1779866
- - ,[12] Jacobson density for associative pairs and its applications, Comm. Alg., 17, no. 10 (1989), 2595-2610. | MR 1019184 | Zbl 0694.17001
- - .[13] Jordan triple homomorphisms of associative structures, Comm. Algebra, 19, no. 4 (1991), 1229-1247. | MR 1102336 | Zbl 0728.17018
,[14] Zel'manov polynomials in quadratic Jordan triple systems, J. Algebra, 140, no. 1 (1991), 160-183. | MR 1114912 | Zbl 0796.17031
,[15] Prime Nondegenerate Jordan Triple Systems with Minimal Inner Ideals, Nonassociative algebraic modelsNova Sci. Publ., Commack, NY. (1992), 143-166. | MR 1189618 | Zbl 0769.17022
- - ,[16] Structure of Rings, American Mathematical Society Colloquium Publications vol. 37, 2nd ed. Providence R.I. | MR 81264 | Zbl 0073.02002
,[17] Über die Klassifikation der symmetrischen hermiteschen Mannigfaltigkeiten unendlicher Dimension, I, Math. Ann., 257 (1981), 363-486. | MR 639580 | Zbl 0482.32010
,[18] Über die Klassifikation der symmetrischen hermiteschen Mannigfaltigkeiten unendlicher Dimension, II, Math. Ann., 262 (1983), 57-75. | MR 690007 | Zbl 0482.32011
,[19] On the socle of a Jordan pair, Collect. Math, 40, no. 2 (1989), 109-125. | MR 1094683 | Zbl 0729.17022
,[20] 460, 1975. | MR 444721 | Zbl 0301.17003
, Jordan pairs, Lecture Notes in Mathematics, Springer-Verlag, Berlin-New York, vol.[21] The Stucture of Strongly Prime Quadratic Jordan Algebras, Adv. in Math, 69, no. 2 (1988), 133-222. | Zbl 0656.17015
- ,[22] Cartan-Involutionen von halbeinfachen rellen Jordan Triplesystemen, Math. Z, 169, no. 2 (1979), 271-292. | MR 554530 | Zbl 0403.17014
,[23] On the classification of Lie and Jordan triple systems, Comm. Algebra, 13, no. 12 (1985), 2615-2667. | MR 811526 | Zbl 0583.17001
,[24] Jordan axioms for -algebras, Manuscripta Math., 61 (1988), 297-314. | MR 949820 | Zbl 0665.46056
,