In this note, we consider a one-parameter family of Abelian varieties , and find an upper bound for the average rank in terms of the generic rank. This bound is based on Michel's estimates for the average rank in a one-parameter family of Abelian varieties, and extends previous work of Silverman for elliptic surfaces.
Si considera una famiglia di varietà abeliane e si determina un estremo superiore per il rango di Mordell-Weil medio, in termini del rango di Mordell- Weil della fibra generica. Questo risultato è basato su stime di Michel per il rango medio di una famiglia di varietà abeliane, ed estende un lavoro precedente di Silverman sulle superficie ellittiche.
@article{BUMI_2004_8_7B_1_241_0, author = {Rania Wazir}, title = {A bound for the average rank of a family of abelian varieties}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {7-A}, year = {2004}, pages = {241-252}, zbl = {1118.11030}, mrnumber = {2044269}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2004_8_7B_1_241_0} }
Wazir, Rania. A bound for the average rank of a family of abelian varieties. Bollettino dell'Unione Matematica Italiana, Tome 7-A (2004) pp. 241-252. http://gdmltest.u-ga.fr/item/BUMI_2004_8_7B_1_241_0/
[Apo76] | MR 434929 | Zbl 0335.10001
, Introduction to analytic number theory, Undergrad. Texts Math., Springer-Verlag, Berlin, 1976.[BK94] The conductor of an abelian variety, Comp. Math, 92 (1994), 227-248. | MR 1283229 | Zbl 0818.14016
- ,[BLR90] 21, Springer Verlag, Berlin, 1990. | MR 1045822 | Zbl 0705.14001
- - , Neron models, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Bd.[Del81] La conjecture de Weil II, Publ. Math. IHES, 52 (1981), 313-428. | MR 601520 | Zbl 0456.14014
,[FP93] Rang des courbes elliptiques et sommes d'exponentielles, Monatsh. Math., 116 (1993), 115-125. | MR 1245858 | Zbl 0796.14022
- ,[Kat74] Etude cohomologique des pinceaux de Lefschetz, SGA 7 II, LNM340, Springer Verlag, 1974, pp. 254-327. | Zbl 0284.14007
,[Mic95] Rang moyen de familles de courbes elliptiques et lois de Sato-Tate, Monatsh. Math., 120 (1995), 127-136. | MR 1348365 | Zbl 0869.11052
,[Mic97] Le rang de familles de variétés abéliennes, J. Alg. Geom., 6 (1997), 201-234. | MR 1489113 | Zbl 0882.11033
,[Mil86] Jacobian varieties, Arithmetic Geometry, Springer-Verlag, Berlin (1986), 167-212. | MR 861976 | Zbl 0604.14018
,[Ram89] Regulators, algebraic cycles, and values of -functions, Algebraic -theory and Algebraic Number Theory ( and , eds.), Contemp. Math., vol. 83, AMS, Providence, 1989, pp. 183-307. | MR 991982 | Zbl 0694.14002
,[RS98] On the rank of an elliptic surface, Invent. Math., 133 (1998), 43-67. | MR 1626465 | Zbl 0905.14019
- ,[Ser65] | MR 194396 | Zbl 0171.19602
, Zeta and functions, Harper and Row, New York, 1965, pp. 82-92.[Shi72] On elliptic modular surfaces, J. Math. Soc. Japan, 24 (1972), 20-59. | MR 429918 | Zbl 0226.14013
,[Shi82] On the Picard number of a Fermat surface, J. Fac. Sci. Univ. Tokyo, Sec. IA, 28 (1982), 725-734. | MR 656049 | Zbl 0567.14021
,[Shi92] Some remarks on elliptic curves over function fields, Astérisque, 209 (1992), 99-114. | MR 1211006 | Zbl 0820.14016
,[Shi99] Mordell-Weil lattices for higher genus fibration over a curve, New trends in algebraic geometry (Warwick, 1996), London Math. Soc. Lecture Note Ser., 264, Cambridge Univ. Press, Cambridge, 1999, pp. 359-373. | MR 1714831 | Zbl 0947.14012
,[Sil94] 151, Springer Verlag, 1994. | MR 1312368 | Zbl 0911.14015
, Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, vol.[Sil98] The average rank of elliptic curves, J. reine angew. Math., 504 (1998), 227-236. | MR 1656771 | Zbl 0923.11087
,[Tat65] Algebraic cycles and poles of zeta functions, Arithmetical Algebraic Geometry, Harper and Row, New York, 1965, pp. 93-110. | MR 225778 | Zbl 0213.22804
,[Waz03] A local-global summation formula for Abelian varieties, Preprint, available on http://www.arxiv.org/abs/math.NT/0302266 (Feb. 2003).
,[Won02] On the Néron-Severi groups of fibered varieties, To appear, J. reine Angew. Math. (2002)
,