For a bounded and sufficiently smooth domain in , , let and be respectively the eigenvalues and the corresponding eigenfunctions of the problem (with Neumann boundary conditions) We prove that knowledge of the Dirichlet boundary spectral data , determines uniquely the Neumann-to-Dirichlet (or the Steklov- Poincaré) map for a related elliptic problem. Under suitable hypothesis on the coefficients their identifiability is then proved. We prove also analogous results for Dirichlet boundary conditions.
Sia un dominio limitato e sufficientemente regolare di , , e siano e rispettivamente gli autovalori e le autofunzioni corrispondenti del problema (con condizioni al bordo di Neumann) Dimostriamo che i dati spetrali al bordo di Dirichlet , determinano in modo unico la mappa di Neumann-Dirichlet (o la mappa di Steklov- Poincaré) per un problema ellittico relativo. Sotto opportune ipotesi sui coefficienti proviamo in seguito la loro identificabilità. Dimostriamo risultati analoghi nel caso di condizioni al bordo di Dirichlet.
@article{BUMI_2004_8_7B_1_207_0, author = {Bruno Canuto and Otared Kavian}, title = {Determining two coefficients in elliptic operators via boundary spectral data: a uniqueness result}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {7-A}, year = {2004}, pages = {207-230}, zbl = {1178.35152}, mrnumber = {2044267}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2004_8_7B_1_207_0} }
Canuto, Bruno; Kavian, Otared. Determining two coefficients in elliptic operators via boundary spectral data: a uniqueness result. Bollettino dell'Unione Matematica Italiana, Tome 7-A (2004) pp. 207-230. http://gdmltest.u-ga.fr/item/BUMI_2004_8_7B_1_207_0/
[1] Eine umkehrung der Sturm-Liouville eigenwertaufgabe, Acta Math., 78 (1946), 1-96. | MR 15185 | Zbl 0063.00523
,[2] Global uniqueness in the impedance imaging problem for less regular conductivities, SIAM J. Math. Anal., 27 (1996), 1049-1056. | MR 1393424 | Zbl 0867.35111
,[3] Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions, Comm. in Part. Diff. Equat., 22 (1997), 1009-1027. | MR 1452176 | Zbl 0884.35167
- ,[4] On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics, Soc. Brasileira de Matemática, Rio de Janeiro, 1980, 65-73. | MR 590275
,[5] Determining coefficients in a class of heat equations via boundary measurements, SIAM J. Math. Anal., 32 (2001), 963-986. | MR 1828313 | Zbl 0981.35096
- :[6] Unique Continuation for Elliptic Operators: A Geometric- Variational Approach, Comm. on Pure and Appl. Math., 40 (1987), 347-366. | MR 882069 | Zbl 0674.35007
- ,[7] On determination of a differential equation from its spectral function, Izv. Akad. Nauk. SSSR Ser. Mat., 15 (1951), 309-360; Amer. Math. Soc. Transl. (Ser. 2), 1 (1955), 253-304. | Zbl 0066.33603
- ,[8] 127, Springer, New York, 1998. | MR 1482521 | Zbl 0908.35134
, Inverse problems for partial differential equations, Applied Math. Sciences, vol.[9] The inverse Sturm-Liouville problem, Mat. Tidsskr., B (1949), 25-30. | MR 32067 | Zbl 0045.36402
,[10] | Zbl 0143.14003
, Problèmes aux limites dans les équations aux dérivées partielles; Presses de l'Université de Montréal, Montréal1965.[11] Reconstructions from boundary measurements; Ann. Math., 128 (1988), 531-577. | Zbl 0675.35084
,[12] An -dimensional Borg-Levinson theorem; Comm. Math. Physics, 115 (1988), 595-605. | Zbl 0644.35095
- - ,