In this paper we prove a local existence theorem for a Cauchy problem associated to a semi linear wave equation with an exponential nonlinearity in two dimension space. In this problem, the first Cauchy data is equal to zero, the second is in , radially symmetric and compactly supported. To prove this theorem, we first show a Moser-Trudinger type inequality for the linear problem and then we use a fixed point method to achieve the proof of the result.
In questo articolo dimostriamo un teorema di esistenza locale per un problema di Cauchy associato ad un'equazione delle onde semilineare in dimensione due. In questo problema la prima condizione iniziale è identicamente nulla, la seconda appartiene a , è a simmetria radiale e a supporto compatto. Per dimostrare questo teorema stabiliamo prima una disuguaglianza di tipo MoserTrudinger per il problema lineare associato e concludiamo grazie ad un'applicazione di un metodo di punto fisso.
@article{BUMI_2004_8_7B_1_1_0, author = {Amel Atallah Baraket}, title = {Local existence and estimations for a semilinear wave equation in two dimension space}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {7-A}, year = {2004}, pages = {1-21}, zbl = {1117.35046}, mrnumber = {2044259}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2004_8_7B_1_1_0} }
Baraket, Amel Atallah. Local existence and estimations for a semilinear wave equation in two dimension space. Bollettino dell'Unione Matematica Italiana, Tome 7-A (2004) pp. 1-21. http://gdmltest.u-ga.fr/item/BUMI_2004_8_7B_1_1_0/
[GSV] The global Cauchy problem for the critical nonLinear wave equation, J. Funct. Anal., 110 (1992), 96-130. | MR 1190421 | Zbl 0813.35054
- - ,[GV1] The global Cauchy problem for the nonlinear Klein-Gordon equations, Math. Z, 189 (1985), 487-505. | MR 786279 | Zbl 0549.35108
- ,[GV2] Generalized Strichartz inequalities for the wave equation, J. Funct. Anal., 133 (1995), 50-68. | MR 1351643 | Zbl 0849.35064
- ,[L] The concentration compactness principle in the calculus of variations the limit case, Part I. Rev. Mat. Iberoamericana, 1 (1985), 145-201. | MR 834360 | Zbl 0704.49005
,[M] A sharp form of an inequality of N. Trudinger, Ind. Univ. Math. J., 20 (1971), 1077-1092. | MR 301504 | Zbl 0213.13001
,[NO] Global solutions in the critical Sobolev space for the wave equations with nonlinearity of exponential growth, Math. Z., 231, No. 3 (1999), 479-487. | MR 1704989 | Zbl 0931.35107
- ,[SS] Regularity results for nonlinear wave equations, Ann. Math., 138 (1993), 503-518. | MR 1247991 | Zbl 0836.35096
- ,[Str] On weak solutions of semi-linear hyperbolic equations, Anais Acad. Brasil Cienc., 42 (1970), 645-651. | MR 306715 | Zbl 0217.13104
,[St] Semilinear wave equations, Bull. Amer. Math. Soc., 26 (1992), 53-86. | MR 1093058 | Zbl 0767.35045
,[Ta] 115. Springer. | MR 1395148 | Zbl 0869.35002
, Partial differential equations I. Basic Theory, Applied. Math. Sciences[Tr] On imbeddings into Orlicz spaces and some applications, J. Math. Mechanics, 17, 5 (1967), 473-484. | MR 216286 | Zbl 0163.36402
,