Hölder continuity results for a class of functionals with non-standard growth
Eleuteri, Michela
Bollettino dell'Unione Matematica Italiana, Tome 7-A (2004), p. 129-157 / Harvested from Biblioteca Digitale Italiana di Matematica

We prove regularity results for real valued minimizers of the integral functional fx,u,Du under non-standard growth conditions of px-type, i.e. L-1zpxfx,s,zL1+zpx under sharp assumptions on the continuous function px>1.

In questo lavoro si provano risultati di regolarità per minimi di funzionali scalari fx,u,Du a crescita non-standard di tipo px, cioè: L-1zpxfx,s,zL1+zpx. Si considerano per la funzione esponente px>1 ipotesi di regolarità ottimali.

Publié le : 2004-02-01
@article{BUMI_2004_8_7B_1_129_0,
     author = {Michela Eleuteri},
     title = {H\"older continuity results for a class of functionals with non-standard growth},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {7-A},
     year = {2004},
     pages = {129-157},
     zbl = {1178.49045},
     mrnumber = {2044264},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2004_8_7B_1_129_0}
}
Eleuteri, Michela. Hölder continuity results for a class of functionals with non-standard growth. Bollettino dell'Unione Matematica Italiana, Tome 7-A (2004) pp. 129-157. http://gdmltest.u-ga.fr/item/BUMI_2004_8_7B_1_129_0/

[AF1] Acerbi, E.-Fusco, N., A regularity theorem for minimizers of quasiconvex integrals, Arch. Rat. Mech. Anal., 99 (1987), 261-281. | MR 888453 | Zbl 0627.49007

[AF2] Acerbi, E.-Fusco, N., A transmission problem in the calculus of variations, Calc. Var. Partial Differential Equations, 2 (1994), 1-16. | MR 1384391 | Zbl 0791.49041

[AM1] Acerbi, E.-Mingione, G., Regularity results for a class of functionals with nonstandard growth, Arch. Ration. Mech. Anal., 156 (2001), 121-140. | MR 1814973 | Zbl 0984.49020

[AM2] Acerbi, E.-Mingione, G., Regularity results for a class of quasiconvex functionals with nonstandard growth, Ann. Scuola Norm. Sup. Cl. Sci. (4), 30 (2001), 311-340. | MR 1895714 | Zbl 1027.49031

[AM3] Acerbi, E.-Mingione, G., Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal., 164, no. 3 (2002), 213-259. | MR 1930392 | Zbl 1038.76058

[AM4] Acerbi, E.-Mingione, G., Regularity results for electrorheological fluids: the stationary case, C. R. Math. Acad. Sci. Paris Ser. I, 334, no. 9 (2002), 817-822. | MR 1905047 | Zbl 1017.76098

[CM] Coscia, A.-Mingione, G., Hölder continuity of the gradient of px-harmonic mappings, C. R. Acad. Sci. Paris Ser. I, 328 (1999), 363-368. | MR 1675954 | Zbl 0920.49020

[CP] Cupini, G.-Petti, R., Hölder continuity of local minimizers of vectorial integral functionals, Nonlinear Diff. Equations Appl., 10, no. 3 (2003), 269-285. | MR 1994811 | Zbl 1023.49028

[CFP] Cupini, G.-Fusco, N.-Petti, R., Hölder continuity of local minimizers, J. Math. Anal. Appl., 235 (1999), 578-597. | MR 1703712 | Zbl 0949.49022

[D] Diening: Theoretical And Numerical Results For Electrorheological Fluids, L., Ph. D. Thesis Universität Freiburg, 2002. | Zbl 1022.76001

[Ek] Ekeland, I., Nonconvex minimization problems, Bull. Am. Math. Soc., (3) 1 (1979), 443-474. | MR 526967 | Zbl 0441.49011

[ELM] Esposito, L.-Leonetti, F.-Mingione, G., Higher integrability for minimizers of integral functionals with p,q growth, J. Differential Equations, 157 (1999), 414-438. | MR 1713266 | Zbl 0939.49021

[ER1] Edmunds, D.-Rakosnik, J., Sobolev embeddings with variable exponent, Studia Mathematica, 143 (2000), 267-293. | MR 1815935 | Zbl 0974.46040

[ER2] Edmunds, D.-Rakosnik, J., Density of smooth functions in Wk,px, Proc. Roy. Soc. London Ser. A, 437 (1992), 229-236. | MR 1177754 | Zbl 0779.46027

[Ev] Evans, L. C., Quasiconvexity and partial regularity in the calculus of variations, Arch. Rat. Mech. Anal., 95 (1986), 227-252. | MR 853966 | Zbl 0627.49006

[F] Fiorenza, A., A mean continuity type result for certain Sobolev spaces with variable exponent, Commun. Contemp. Math., 4, no. 3 (2002), 587-605. | MR 1918761 | Zbl 1015.46019

[FF] Fonseca, I.-Fusco, N., Regularity results for anisotropic image segmentation models, Ann. Scuola Norm. Sup. Pisa, 24 (1997), 463-499. | MR 1612389 | Zbl 0899.49018

[FFM] Fonseca, I., Fusco, N., Marcellini, P., An existence result for a non convex variational problem via regularity, ESAIM: Control, Opt. and Calc. Var., 7 (2002), 69-96. | MR 1925022 | Zbl 1044.49011

[FH] Fusco, N.-Hutchinson, J. E., C1,α partial regularity of functions minimizing quasiconvex integrals, Manuscripta Math., 54, 1-2 (1985), 121-143. | MR 808684 | Zbl 0587.49005

[FM] Fuchs, M.-Mingione, G., Full C1,α regularity for free and constrained local minimizers of elliptic variational integrals with nearly linear growth, Manuscripta Math., 102 (2000), 227-250. | MR 1771942 | Zbl 0995.49023

[FZ] Fan, X.-Zhao, D., A class of De Giorgi type and Hölder continuity, Nonlinear Anal. TMA, 36(A) (1999), 295-318. | MR 1688232 | Zbl 0927.46022

[G] Giusti, E., Metodi diretti nel calcolo delle variazioni, U.M.I., Bologna, 1994. | MR 1707291 | Zbl 0942.49002

[Ma] Manfredi, J. J., Regularity for minima of functionals with p-growth, J. Differential Equations, 76 (1988), 203-212. | MR 969420 | Zbl 0674.35008

[M1] Marcellini, P., Regularity of minimizers of integrals of the Calculus of Variations with non standard growth conditions, Arch. Rational Mech. Anal., 105 (1989), 267-284. | MR 969900 | Zbl 0667.49032

[M2] Marcellini, P., Regularity and existence of solutions of elliptic equations with p,q-growth conditions, J. Differential Equations, 90 (1991), 1-30. | MR 1094446 | Zbl 0724.35043

[M3] Marcellini, P., Everywhere regularity for a class of elliptic systems without growth conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 23 (1996), 1-25. | MR 1401415 | Zbl 0922.35031

[MM] Mascolo, E.-Migliorini, A. P., Everywhere regularity for vectorial functionals with general growth, ESAIM: Control Optim. Calc. Var., 9 (2003), 399-418. | MR 1988669 | Zbl 1066.49023

[RR] Rajagopal, K. R.-Růžička, M., Mathematical modelling of electrorheological materials, Cont. Mech. Thermod., 13 (2001), 59-78. | Zbl 0971.76100

[R1] Růžička, M., Flow of shear dependent electrorheological fluids, C. R. Acad. Sci. Paris, 329 (1999), 393-398. | MR 1710119 | Zbl 0954.76097

[R2] Růžička, M., Electrorheological fluids: modeling and mathematical theory, Lecture notes in Mat.1748, Springer Verlag, Berlin, Heidelberg, New York (2000). | MR 1810360 | Zbl 0962.76001

[S] Stredulinski, E. W., Higher integrability from reverse Hölder inequalities, Indiana Univ. Math. J., 29 (1980), 407-413. | MR 570689 | Zbl 0442.35064

[SZ] Serrin, J.-Zou, H., Symmetry of ground states of quasilinear elliptic equations, Arch. Rational Mech. Anal., 148 (1999), 265-290. | MR 1716665 | Zbl 0940.35079

[Uh] Uhlenbeck, K., Regularity for a class of non-linear elliptic systems, Acta Math., 138 (1977), 219-240. | MR 474389 | Zbl 0372.35030

[Ur] Ural'Tseva, N., Quasilinear degenerate elliptic systems (Russian), Leningrad Odtel. Mat. Inst. Steklov (LOMI), 7 (1968), 184-222. | MR 244628 | Zbl 0196.12501

[Z1] Zhikov, V. V., On some variational problems, Russian J. Math. Physics, 5 (1997), 105-116. | MR 1486765 | Zbl 0917.49006

[Z2] Zhikov, V. V., Meyers-type estimates for solving the non linear Stokes system, Differential Equations, 33 (1) (1997), 107-114. | MR 1607245 | Zbl 0911.35089