We prove regularity results for real valued minimizers of the integral functional under non-standard growth conditions of -type, i.e. under sharp assumptions on the continuous function .
In questo lavoro si provano risultati di regolarità per minimi di funzionali scalari a crescita non-standard di tipo , cioè: Si considerano per la funzione esponente ipotesi di regolarità ottimali.
@article{BUMI_2004_8_7B_1_129_0,
author = {Michela Eleuteri},
title = {H\"older continuity results for a class of functionals with non-standard growth},
journal = {Bollettino dell'Unione Matematica Italiana},
volume = {7-A},
year = {2004},
pages = {129-157},
zbl = {1178.49045},
mrnumber = {2044264},
language = {en},
url = {http://dml.mathdoc.fr/item/BUMI_2004_8_7B_1_129_0}
}
Eleuteri, Michela. Hölder continuity results for a class of functionals with non-standard growth. Bollettino dell'Unione Matematica Italiana, Tome 7-A (2004) pp. 129-157. http://gdmltest.u-ga.fr/item/BUMI_2004_8_7B_1_129_0/
[AF1] -, A regularity theorem for minimizers of quasiconvex integrals, Arch. Rat. Mech. Anal., 99 (1987), 261-281. | MR 888453 | Zbl 0627.49007
[AF2] -, A transmission problem in the calculus of variations, Calc. Var. Partial Differential Equations, 2 (1994), 1-16. | MR 1384391 | Zbl 0791.49041
[AM1] -, Regularity results for a class of functionals with nonstandard growth, Arch. Ration. Mech. Anal., 156 (2001), 121-140. | MR 1814973 | Zbl 0984.49020
[AM2] -, Regularity results for a class of quasiconvex functionals with nonstandard growth, Ann. Scuola Norm. Sup. Cl. Sci. (4), 30 (2001), 311-340. | MR 1895714 | Zbl 1027.49031
[AM3] -, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal., 164, no. 3 (2002), 213-259. | MR 1930392 | Zbl 1038.76058
[AM4] -, Regularity results for electrorheological fluids: the stationary case, C. R. Math. Acad. Sci. Paris Ser. I, 334, no. 9 (2002), 817-822. | MR 1905047 | Zbl 1017.76098
[CM] -, Hölder continuity of the gradient of -harmonic mappings, C. R. Acad. Sci. Paris Ser. I, 328 (1999), 363-368. | MR 1675954 | Zbl 0920.49020
[CP] -, Hölder continuity of local minimizers of vectorial integral functionals, Nonlinear Diff. Equations Appl., 10, no. 3 (2003), 269-285. | MR 1994811 | Zbl 1023.49028
[CFP] --, Hölder continuity of local minimizers, J. Math. Anal. Appl., 235 (1999), 578-597. | MR 1703712 | Zbl 0949.49022
[D] , Ph. D. Thesis Universität Freiburg, 2002. | Zbl 1022.76001
[Ek] , Nonconvex minimization problems, Bull. Am. Math. Soc., (3) 1 (1979), 443-474. | MR 526967 | Zbl 0441.49011
[ELM] --, Higher integrability for minimizers of integral functionals with growth, J. Differential Equations, 157 (1999), 414-438. | MR 1713266 | Zbl 0939.49021
[ER1] -, Sobolev embeddings with variable exponent, Studia Mathematica, 143 (2000), 267-293. | MR 1815935 | Zbl 0974.46040
[ER2] -, Density of smooth functions in , Proc. Roy. Soc. London Ser. A, 437 (1992), 229-236. | MR 1177754 | Zbl 0779.46027
[Ev] , Quasiconvexity and partial regularity in the calculus of variations, Arch. Rat. Mech. Anal., 95 (1986), 227-252. | MR 853966 | Zbl 0627.49006
[F] , A mean continuity type result for certain Sobolev spaces with variable exponent, Commun. Contemp. Math., 4, no. 3 (2002), 587-605. | MR 1918761 | Zbl 1015.46019
[FF] -, Regularity results for anisotropic image segmentation models, Ann. Scuola Norm. Sup. Pisa, 24 (1997), 463-499. | MR 1612389 | Zbl 0899.49018
[FFM] , , , An existence result for a non convex variational problem via regularity, ESAIM: Control, Opt. and Calc. Var., 7 (2002), 69-96. | MR 1925022 | Zbl 1044.49011
[FH] -, partial regularity of functions minimizing quasiconvex integrals, Manuscripta Math., 54, 1-2 (1985), 121-143. | MR 808684 | Zbl 0587.49005
[FM] -, Full regularity for free and constrained local minimizers of elliptic variational integrals with nearly linear growth, Manuscripta Math., 102 (2000), 227-250. | MR 1771942 | Zbl 0995.49023
[FZ] -, A class of De Giorgi type and Hölder continuity, Nonlinear Anal. TMA, 36(A) (1999), 295-318. | MR 1688232 | Zbl 0927.46022
[G] , Metodi diretti nel calcolo delle variazioni, U.M.I., Bologna, 1994. | MR 1707291 | Zbl 0942.49002
[Ma] , Regularity for minima of functionals with -growth, J. Differential Equations, 76 (1988), 203-212. | MR 969420 | Zbl 0674.35008
[M1] , Regularity of minimizers of integrals of the Calculus of Variations with non standard growth conditions, Arch. Rational Mech. Anal., 105 (1989), 267-284. | MR 969900 | Zbl 0667.49032
[M2] , Regularity and existence of solutions of elliptic equations with -growth conditions, J. Differential Equations, 90 (1991), 1-30. | MR 1094446 | Zbl 0724.35043
[M3] , Everywhere regularity for a class of elliptic systems without growth conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 23 (1996), 1-25. | MR 1401415 | Zbl 0922.35031
[MM] -, Everywhere regularity for vectorial functionals with general growth, ESAIM: Control Optim. Calc. Var., 9 (2003), 399-418. | MR 1988669 | Zbl 1066.49023
[RR] -, Mathematical modelling of electrorheological materials, Cont. Mech. Thermod., 13 (2001), 59-78. | Zbl 0971.76100
[R1] , Flow of shear dependent electrorheological fluids, C. R. Acad. Sci. Paris, 329 (1999), 393-398. | MR 1710119 | Zbl 0954.76097
[R2] , Electrorheological fluids: modeling and mathematical theory, Lecture notes in Mat.1748, Springer Verlag, Berlin, Heidelberg, New York (2000). | MR 1810360 | Zbl 0962.76001
[S] , Higher integrability from reverse Hölder inequalities, Indiana Univ. Math. J., 29 (1980), 407-413. | MR 570689 | Zbl 0442.35064
[SZ] -, Symmetry of ground states of quasilinear elliptic equations, Arch. Rational Mech. Anal., 148 (1999), 265-290. | MR 1716665 | Zbl 0940.35079
[Uh] , Regularity for a class of non-linear elliptic systems, Acta Math., 138 (1977), 219-240. | MR 474389 | Zbl 0372.35030
[Ur] , Quasilinear degenerate elliptic systems (Russian), Leningrad Odtel. Mat. Inst. Steklov (LOMI), 7 (1968), 184-222. | MR 244628 | Zbl 0196.12501
[Z1] , On some variational problems, Russian J. Math. Physics, 5 (1997), 105-116. | MR 1486765 | Zbl 0917.49006
[Z2] , Meyers-type estimates for solving the non linear Stokes system, Differential Equations, 33 (1) (1997), 107-114. | MR 1607245 | Zbl 0911.35089