Global weak solutions for a degenerate parabolic system modelling a one-dimensional compressible miscible flow in porous media
Amirat, Y. ; Ziani, A.
Bollettino dell'Unione Matematica Italiana, Tome 7-A (2004), p. 109-128 / Harvested from Biblioteca Digitale Italiana di Matematica

We show the solvability of a nonlinear degenerate parabolic system of two equations describing the displacement of one compressible fluid by another, completely miscible with the first, in a one-dimensional porous medium, neglecting the molecular diffusion. We use the technique of renormalised solutions for parabolic equations in the derivation of a priori estimates for viscosity type solutions. We pass to the limit, as the molecular diffusion coefficient tends to 0, on the parabolic system, owing to compensated compactness arguments.

Proviamo la risolubilità di un sistema parabolico non lineare degenere costituito da due equazioni che descrivono lo spostamento di un fluido compressibile, causato da un altro fluido, completamente miscibile al primo, in un mezzo poroso unidimensionale, trascurando la diffusione molecolare. Usiamo la tecnica delle soluzioni rinormalizzate per le equazioni paraboliche al fine di ottenere stime a priori per soluzioni di tipo viscosità. Passiamo al limite nel sistema parabolico, quando il coefficiente di diffusione molecolare tende a zero, tramite metodi di compattezza per compensazione.

Publié le : 2004-02-01
@article{BUMI_2004_8_7B_1_109_0,
     author = {Y. Amirat and A. Ziani},
     title = {Global weak solutions for a degenerate parabolic system modelling a one-dimensional compressible miscible flow in porous media},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {7-A},
     year = {2004},
     pages = {109-128},
     zbl = {1117.35038},
     mrnumber = {2044263},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2004_8_7B_1_109_0}
}
Amirat, Y.; Ziani, A. Global weak solutions for a degenerate parabolic system modelling a one-dimensional compressible miscible flow in porous media. Bollettino dell'Unione Matematica Italiana, Tome 7-A (2004) pp. 109-128. http://gdmltest.u-ga.fr/item/BUMI_2004_8_7B_1_109_0/

[1] Amirat, Y.-Hamdache, K.-Ziani, A., Mathematical Analysis for compressible miscible displacement models in porous media, Mathematical Models and Methods in Applied Sciences, 6 (6) (1996), 729-747. | MR 1404826 | Zbl 0859.35087

[2] Amirat, Y.-Ziani, A., Global weak solutions for one-dimensional miscible flow models in porous media, Journal of Math. Analysis and Applications, 220 (2) (1998), 697-718. | MR 1614944 | Zbl 0911.35063

[3] Aubin, J.-P., Un théorème de compacité, C. R. Acad. Sci., 256 (1963), 5042-5044. | MR 152860 | Zbl 0195.13002

[4] Bear, J., Dynamics of Fluids in Porous Media (American Elsevier, 1972). | Zbl 1191.76001

[5] Boccardo, L.-Gallouët, T., Non linear elliptic and parabolic equations involving measure data, J. Functional Analysis, 87 (1989), 149-169. | Zbl 0707.35060

[6] Chou, S. H.-Li, Q., Mixed finite element methods for compressible miscible displacement in porous media, Math. Comput., 57 (196) (1991), 507-527. | MR 1094942 | Zbl 0732.76081

[7] Douglas, J.-Roberts, J. E., Numerical methods for a model of compressible miscible displacement in porous media, Math. of Computation, 41 (164) (1983), 441-459. | MR 717695 | Zbl 0537.76062

[8] Feng, X., Strong solutions to a nonlinear parabolic system modeling compressible miscible displacement in porous media, Nonlinear Analysis, Theory, Methods & Applications, 23 (12) (1994), 1515-1531. | Zbl 0822.35065

[9] Kazhikhov, A. V., Recent developments in the global theory of two-dimensional compressible Navier-Stokes equations, Seminar on Mathematical Sciences, Keio University, Department of Mathematics, 25 (1998). | MR 1600212 | Zbl 0893.35099

[10] Lions, J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires (Dunod-Gauthier-Villars, 1969). | MR 259693 | Zbl 0189.40603

[11] Murat, F., Soluciones renormalizadas de EDP elipticas no lineales, Prépublication du Laboratoire d’Analyse Numérique, 93023 (Université de Paris 6, 1993).

[12] Murat, F., Compacité par compensation, Ann. Scuola Norm. Sup. Pisa, 5 (1978), 489-507. | MR 506997 | Zbl 0399.46022

[13] Peaceman, D. W., Fundamentals of Numerical Reservoir Simulation (Elsevier, 1977).

[14] Pearson, J. R. A.-Tardy, P. M. J., Models for flow of non-Newtonian and complex fluids through porous media, J. Non-Newtonian Fluid Mech., 102 (2002), 447-473. | Zbl 0997.76006

[15] Scheidegger, A. E., The Physics of flow through porous media (Univ. Toronto Press, 1974). | Zbl 0095.22402

[16] Tartar, L., Compensated Compactness and Applications to P.D.E., in Non Linear Analysis and Mechanics, Heriot-Watt Symposium, R.J. Knops ed., Research Notes in Math., 4 (39) (Pitman Press, 1979), 136-212. | MR 584398 | Zbl 0437.35004

[17] M.-F. Wheeler (ed.), Numerical simulation in oil recovery, The IMA Volumes in Mathematics and Its Applications, 11 (Springer-Verlag, 1988). | MR 922953 | Zbl 0698.00039

[18] Young, L. C., A study of spatial approximations for simulating fluid displacements in petroleum reservoirs, Comp. Methods in Applied Mech. and Engineering, 47 (1984), 3-46. | Zbl 0545.76124