Combinatoria e Topologia. Teorema di Quillen e funzioni di Möbius
Brini, Andrea
Bollettino dell'Unione Matematica Italiana, Tome 7-A (2004), p. 143-172 / Harvested from Biblioteca Digitale Italiana di Matematica

The notion of Galois Connections between partially ordered sets is introduced, together with a presentation of some of its main characterizations. This leads to a true understanding of the deep connection that links Galois Connections to Quillen’s Homotopy Type Equivalence Theorem. Furthermore, the notion of Möbius functions of finite lattices is discussed, in order to show its crucial role in Enumerative Combinatorics over Finite Posets and Discrete Probability Theory. Since the values of the Möbius function of a finite lattice may be regarded as reduced Euler Characteristic of suitable topological spaces, a wide variety of combinatorial results can be proved by topological methods. We exploit this point of view by providing elementary proofs of two classical theorems: the «Cross-Cut Theorem» of Rota and the «Vanishing Theorem for not-strongly complemented lattices» of Crapo.

Si introduce la nozione combinatoria di connessione di Galois tra insiemi parzialmente ordinati e se ne descrivono i principali risultati di caratterizzazione; questi risultati aprono la strada alla comprensione del profondo legame che sussiste tra la nozione connessione di Galois ed il Criterio di Omotopia di Quillen. Si introduce quindi la nozione di funzione di Möbius di un reticolo finito L e se ne discute brevemente, anche tramite un esempio significativo, la cruciale importanza nell’ambito della Combinatoria Enumerativa e della Probabilità Discreta. Dopo aver riconosciuto che i valori della funzioni di Möbius possono essere interpretati come «Caratteristiche di Eulero» di opportuni complessi, a titolo di esempio e di applicazione di metodi topologici alla combinatoria degli insiemi parzialmente ordinati, si presentano e si dimostrano le versioni topologiche di due classici Teoremi: il «Teorema del Cross-Cut» ed il «Teorema di annullamento per reticoli non fortemente complementati».

Publié le : 2004-04-01
@article{BUMI_2004_8_7A_1_143_0,
     author = {Andrea Brini},
     title = {Combinatoria e Topologia. Teorema di Quillen e funzioni di M\"obius},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {7-A},
     year = {2004},
     pages = {143-172},
     zbl = {1192.55001},
     mrnumber = {2058729},
     language = {it},
     url = {http://dml.mathdoc.fr/item/BUMI_2004_8_7A_1_143_0}
}
Brini, Andrea. Combinatoria e Topologia. Teorema di Quillen e funzioni di Möbius. Bollettino dell'Unione Matematica Italiana, Tome 7-A (2004) pp. 143-172. http://gdmltest.u-ga.fr/item/BUMI_2004_8_7A_1_143_0/

[1] Aigner, M., Combinatorial Theory, Springer-Verlag, 1978.

[2] Barnabei, M. - Brini, A. - Rota, G.-C., Theory of Möbius functions (in russo), Uspehi Mat. Nauk, 41(1986), 113-157. English translation: Theory of Möbius functions, Russian Math. Translations (London Math. Soc.), 41 (1987), 113-157. | MR 542445

[3] Bender, E. A.- Goldman, J. R., On application of Möbius inversion in combinatorial analysis, Amer. Math. Monthly, 82(1975), 789-803. | MR 854241

[4] Bjorner, A., Homotopy types of posets and lattice complementation, J. Combin. Theory (A), 30(1981), 90-100. | MR 376360 | Zbl 0442.55011

[5] Bjorner, A., Topological Methods, in «Handbook of Combinatorics, vol. II» (R. L. Graham, M. Grotschel, L. Lovasz, Eds.), pp. 1821-1872, North-Holland, Amsterdam, 1995. | MR 607041

[6] Brini, A., Some Homological Properties of Partially Ordered Sets, Advances in Math., 43(1982), 197-201. | MR 1373690 | Zbl 0484.06003

[7] Cerasoli, M. - Eugeni, F. - Protasi, M., «Elementi di Matematica Discreta», Zanichelli, 1988. | MR 644672

[8] Crapo, H., The Möbius function of a lattice, J. Combin. Theory (A), 1(1966), 126-131. | MR 1093460 | Zbl 0146.01601

[9] Folkman, J., The homology groups of a lattice, J. Math. Mech., 15(1966), 631-636. | MR 193018 | Zbl 0146.01602

[10] Lakser, H., The homology of a lattice, Disc. Math., 1(1971), 187-192. | MR 188116 | Zbl 0227.06002

[11] Mather, J., Invariance of the homology of a lattice, Proc. Amer. Math. Soc., 17(1966), 1120-1124. | MR 288755 | Zbl 0147.42102

[12] Maunder, C. R. F., «Algebraic Topology», Van Nostrand, 1970. | MR 202645

[13] Munkres, J. R., «Elements of Algebraic Topology», Addison-Wesley, 1984. | MR 1402473

[14] Ore, O., Galois connections, Trans. Amer. Math. Soc., 55 (1944), 493- 513. | Zbl 0060.06204

[15] Rota, G.-C., On the foundations of combinatorial theory I. Theory of Möbius functions, Z. Wahrsch. Verw. Gebiete, 2(1964), 340-368. | MR 10555

[16] Quillen, D., Higher algebraic K-theory, I, in «Algebraic K-Theory, 1», Lecture Notes in Mathematics, No. 341, pp. 85-147, Springer-Verlag, Berlin, 1973. | MR 174487

[17] Quillen, D., Homotopy properties of posets of non-trivial p-subgroups of a group, Advances in Math., 28(1978), 101-128. | MR 338129 | Zbl 0388.55007

[18] Stanley, R. P., «Enumerative Combinatorics. Volume I», Wadsworth and Brooks, 1986. | MR 493916

[19] Walker, J. W., Homotopy Type and Euler Characteristic of Partially Ordered sets, Europ. J. Combinatorics, 2(1981), 373-384. | MR 847717 | Zbl 0472.06004