We study the simple connectivity at infinity of groups of finite presentation, and we give a geometric proof of its invariance under quasi-isometry in a special case.
In questo articolo si definisce e si studia la nozione di semplice connessione all'infinito dei gruppi di presentazione finita, dando poi, in un caso particolare, una prova geometrica della sua invarianza per quasi-isometrie.
@article{BUMI_2003_8_6B_3_739_0,
author = {Daniele Ettore Otera},
title = {On the simple connectivity at infinity of groups},
journal = {Bollettino dell'Unione Matematica Italiana},
volume = {6-A},
year = {2003},
pages = {739-748},
zbl = {1121.57004},
mrnumber = {2014830},
language = {en},
url = {http://dml.mathdoc.fr/item/BUMI_2003_8_6B_3_739_0}
}
Otera, Daniele Ettore. On the simple connectivity at infinity of groups. Bollettino dell'Unione Matematica Italiana, Tome 6-A (2003) pp. 739-748. http://gdmltest.u-ga.fr/item/BUMI_2003_8_6B_3_739_0/
[1] , Groups generated by reflections and aspherical manifolds non covered by Euclidian Spaces, Ann. of Math., 117 (1983), 293-324. | MR 690848 | Zbl 0531.57041
[2] -, Quasi-isometry invariance of the simple connectivity at infinity of groups, preprint n. 141 Univ. di Palermo, 4 p. 2001.
[3] , Convergence groups are Fuchsian groups, Annals of Mathematics, 136 (1992), 447-510. | MR 1189862 | Zbl 0785.57004
[4] -, Sur les groupes hyperboliques d'après M. Gromov, Progress in Math., vol. 3, Birkhauser (1990). | MR 1086648 | Zbl 0731.20025
[5] -, The fundamental group at infinity, Topology, 35 (1996), 655-669. | MR 1396771 | Zbl 0860.57002
[6] , Hyperbolic groups, Essays in Group Theory ( Ed.), MSRI publications, no. 8, Springer-Verlag (1987). | MR 919829 | Zbl 0634.20015
[7] --, Compactifying covering of closed -manifolds, J. of Diff. Geom., 30 (1989), 817-832. | MR 1021374 | Zbl 0693.57011
[8] -, Manifolds covered by Euclidian space, Topology, 14 (1979), 49-57. | MR 365581 | Zbl 0313.57005
[9] , Some contractible open -manifold, Transactions of A.M.S., 102 (1962), 373-382. | MR 137105 | Zbl 0111.18701
[10] -, Open -manifolds and the Poincare conjecture, Topology, 19 (1980), 313-320. | MR 579580 | Zbl 0441.57010
[11] , Contractible open -manifolds that are not covering spaces, Topology, 27 (1988), 27-35. | MR 935526 | Zbl 0658.57007
[12] , , A short outline of the proof, Prépublication d'Orsay, 73 (1999).
[13] , Universal covering spaces of closed -manifolds are simply-connected at infinity, Prépublication d'Orsay, 20 (2000).
[14] , The piecewise linear structure of the Euclidean space, Proc. of the Cambridge Math. Phil. Soc., 58 (1962), 481-488. | MR 149457 | Zbl 0107.40203
[15] , Sui gruppi semplicemente connessi all'infinito, Rend. Ist. Mat. Univ. Trieste, 31 (1999), 61-78. | Zbl 0965.57003
[16] , On irreducible 3-manifolds which are sufficiently large, Ann. of Math., 87 (1968), 56-88. | MR 224099 | Zbl 0157.30603
[17] , A certain open manifold whose group is unity, Quart. J. of Math., 6 (1935), 268-279. | Zbl 0013.08103