On the simple connectivity at infinity of groups
Otera, Daniele Ettore
Bollettino dell'Unione Matematica Italiana, Tome 6-A (2003), p. 739-748 / Harvested from Biblioteca Digitale Italiana di Matematica

We study the simple connectivity at infinity of groups of finite presentation, and we give a geometric proof of its invariance under quasi-isometry in a special case.

In questo articolo si definisce e si studia la nozione di semplice connessione all'infinito dei gruppi di presentazione finita, dando poi, in un caso particolare, una prova geometrica della sua invarianza per quasi-isometrie.

Publié le : 2003-10-01
@article{BUMI_2003_8_6B_3_739_0,
     author = {Daniele Ettore Otera},
     title = {On the simple connectivity at infinity of groups},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {6-A},
     year = {2003},
     pages = {739-748},
     zbl = {1121.57004},
     mrnumber = {2014830},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2003_8_6B_3_739_0}
}
Otera, Daniele Ettore. On the simple connectivity at infinity of groups. Bollettino dell'Unione Matematica Italiana, Tome 6-A (2003) pp. 739-748. http://gdmltest.u-ga.fr/item/BUMI_2003_8_6B_3_739_0/

[1] Davis, M., Groups generated by reflections and aspherical manifolds non covered by Euclidian Spaces, Ann. of Math., 117 (1983), 293-324. | MR 690848 | Zbl 0531.57041

[2] Funar, L.-Otera, D. E., Quasi-isometry invariance of the simple connectivity at infinity of groups, preprint n. 141 Univ. di Palermo, 4 p. 2001.

[3] Gabai, D., Convergence groups are Fuchsian groups, Annals of Mathematics, 136 (1992), 447-510. | MR 1189862 | Zbl 0785.57004

[4] E. Ghys-P. De La Harpe (Editors), Sur les groupes hyperboliques d'après M. Gromov, Progress in Math., vol. 3, Birkhauser (1990). | MR 1086648 | Zbl 0731.20025

[5] Geoghegan, R.-Mihalik, M., The fundamental group at infinity, Topology, 35 (1996), 655-669. | MR 1396771 | Zbl 0860.57002

[6] Gromov, M., Hyperbolic groups, Essays in Group Theory (S. Gersten Ed.), MSRI publications, no. 8, Springer-Verlag (1987). | MR 919829 | Zbl 0634.20015

[7] Hass, J.-Rubinstein, H.-Scott, P., Compactifying covering of closed 3-manifolds, J. of Diff. Geom., 30 (1989), 817-832. | MR 1021374 | Zbl 0693.57011

[8] Lee, R.-Raymond, F., Manifolds covered by Euclidian space, Topology, 14 (1979), 49-57. | MR 365581 | Zbl 0313.57005

[9] Mcmillan, D. R., Some contractible open 3-manifold, Transactions of A.M.S., 102 (1962), 373-382. | MR 137105 | Zbl 0111.18701

[10] Mcmillan, D. R.-Tickstun, T. L., Open 3-manifolds and the Poincare conjecture, Topology, 19 (1980), 313-320. | MR 579580 | Zbl 0441.57010

[11] Myers, R., Contractible open 3-manifolds that are not covering spaces, Topology, 27 (1988), 27-35. | MR 935526 | Zbl 0658.57007

[12] Poénaru, V., π1M~3=0, A short outline of the proof, Prépublication d'Orsay, 73 (1999).

[13] Poénaru, V., Universal covering spaces of closed 3-manifolds are simply-connected at infinity, Prépublication d'Orsay, 20 (2000).

[14] Stallings, J., The piecewise linear structure of the Euclidean space, Proc. of the Cambridge Math. Phil. Soc., 58 (1962), 481-488. | MR 149457 | Zbl 0107.40203

[15] Tanasi, C., Sui gruppi semplicemente connessi all'infinito, Rend. Ist. Mat. Univ. Trieste, 31 (1999), 61-78. | Zbl 0965.57003

[16] Waldhausen, F., On irreducible 3-manifolds which are sufficiently large, Ann. of Math., 87 (1968), 56-88. | MR 224099 | Zbl 0157.30603

[17] Whitehead, J. H. C., A certain open manifold whose group is unity, Quart. J. of Math., 6 (1935), 268-279. | Zbl 0013.08103