A mathematical introduction to the Wigner formulation of quantum mechanics
Barletti, Luigi
Bollettino dell'Unione Matematica Italiana, Tome 6-A (2003), p. 693-716 / Harvested from Biblioteca Digitale Italiana di Matematica

The paper is devoted to review, from a mathematical point of view, some fundamental aspects of the Wigner formulation of quantum mechanics. Starting from the axioms of quantum mechanics and of quantum statistics, we justify the introduction of the Wigner transform and eventually deduce the Wigner equation.

Il presente articolo è una rassegna di alcuni aspetti matematici fondamentali della formulazione Wigneriana della meccanica quantistica. A partire dagli assiomi della meccanica quantistica e della meccanica statistica quantistica viene motivata l'introduzione della trasformazione di Wigner e viene infine dedotta l'equazione di Wigner.

Publié le : 2003-10-01
@article{BUMI_2003_8_6B_3_693_0,
     author = {Luigi Barletti},
     title = {A mathematical introduction to the Wigner formulation of quantum mechanics},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {6-A},
     year = {2003},
     pages = {693-716},
     zbl = {1117.81091},
     mrnumber = {2014828},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2003_8_6B_3_693_0}
}
Barletti, Luigi. A mathematical introduction to the Wigner formulation of quantum mechanics. Bollettino dell'Unione Matematica Italiana, Tome 6-A (2003) pp. 693-716. http://gdmltest.u-ga.fr/item/BUMI_2003_8_6B_3_693_0/

[1] Arnold, A.-Lange, H.-Zweifel, P. F., A discrete-velocity stationary Wigner equation, J. Math. Phys., 41 (2000), 7167-7180. | MR 1788568 | Zbl 1019.82020

[2] Arnold, A.-Steinrück, H., The "electromagnetic" Wigner equation for an electron with spin, Z. Angew. Math. Phys., 40 (1989), 793-815. | MR 1027576 | Zbl 0701.35130

[3] Banasiak, J.-Barletti, L., On the existence of propagators in stationary Wigner equation without velocity cut-off, Transport Theory Stat. Phys., 30 (2001), 659-672. | MR 1865352 | Zbl 0990.82019

[4] Barletti, L.-Zweifel, P. F., Parity-decomposition method for the stationary Wigner equation with inflow boundary conditions, Transport Theory Stat. Phys., 30 (2001), 507-520. | MR 1866627 | Zbl 1006.82032

[5] Ben Abdallah, N.-Degond, P.-Gamba, I., Inflow boundary conditions for the time dependent one-dimensional Schrödinger equation, C. R. Acad. Sci. Paris, Sér. I Math., 331 (2000), 1023-1028. | MR 1809447 | Zbl 1158.35344

[6] Billingsley, P., Probability and Measure (third edition), Wiley, 1995. | MR 1324786 | Zbl 0822.60002

[7] Bordone, P.-Pascoli, M.-Brunetti, R.-Bertoni, A.-Jacoboni, C., Quantum transport of electrons in open nanostructures with the Wigner-function formalism, Phys. Rev. B, 59 (1999), 3060-3069.

[8] Carruthers, P.-Zachariasen, F., Quantum collision theory with phase-space distributions, Rev. Mod. Phys., 55 (1983), 245-285. | MR 698046

[9] Claasen, T. A.-Mecklenbräuker, W. F., The Wigner distribution - a tool for time-frequency signal analysis, Philips J. Res., 35 (1980), 217-250. | MR 590577 | Zbl 0474.94007

[10] De Groot, S. R.-Suttorp, L. G., Foundations of Electrodynamics, North-Holland, 1972.

[11] Ferry, D. K.-Goodnick, S. M., Transport in Nanostructures, Cambridge University Press, 1997.

[12] Feynman, R. P., Statistical Mechanics, W. A. Benjamin Inc., 1972. | Zbl 0997.82500

[13] Folland, G. B., Harmonic Analysis in Phase Space, Princeton University Press, 1989. | MR 983366 | Zbl 0682.43001

[14] Frensley, W. R., Boundary conditions for open quantum systems driven far from equilibrium, Rev. Modern Phys., 62 (1990), 745-791.

[15] Frommlet, F., Time irreversibility in quantum mechanical systems, PhD thesis, Technischen Universität Berlin, 2000.

[16] Gérard, P.-Markowich, P. A.-Mauser, N. J.-Poupaud, F., Homogenization limits and Wigner transforms, Comm. Pure Appl. Math., 50 (1997), 323-379. | MR 1438151 | Zbl 0881.35099

[17] Liboff, R. L., Kinetic Theory: Classical, Quantum and Relativistic Descriptions, Wiley, 1998.

[18] Lions, P. L.-Paul, T., Sur les mesures de Wigner, Rev. Matematica Iberoamericana, 9 (1993), 553-618. | MR 1251718 | Zbl 0801.35117

[19] Mackey, G. W., The Mathematical Foundations of Quantum Mechanics, W. A. Benjamin Inc., 1963. | Zbl 0114.44002

[20] Markowich, P. A., On the equivalence of the Schrödinger and the quantum Liouville equations, Math. Meth. Appl. Sci., 11 (1989), 459-469. | MR 1001097 | Zbl 0696.47042

[21] Markowich, P. A.-Mauser, N. J.-Poupaud, F., A Wigner function approach to (semi)classical limits: Electrons in a periodic potential, J. Math. Phys., 35 (1994), 1066-1094. | MR 1262733 | Zbl 0805.35106

[22] Markowich, P. A.-Ringhofer, C. A.-Schmeiser, C., Semiconductor Equations, Springer Verlag, 1990. | MR 1063852 | Zbl 0765.35001

[23] Von Neumann, J., Mathematical Foundations of Quantum Mechanics, Princeton University Press, 1955. | MR 66944 | Zbl 0064.21503

[24] Reed, M.-Simon, B., Methods of Modern Mathematical Physics, I - Functional Analysis, Academic Press, 1972. | MR 493419 | Zbl 0242.46001

[25] Tatarskiĭ, V. I., The Wigner representation of quantum mechanics, Sov. Phys. Usp., 26 (1983), 311-327. | MR 730012

[26] Weyl, H., The Theory of Groups and Quantum Mechanics, Dover, 1950. | JFM 58.1374.01 | Zbl 0041.56804

[27] Wigner, E., On the quantum correction for thermodynamic equilibrium, Phys. Rev., 40 (1932), 749-759. | JFM 58.0948.07

[28] Zhao, P.-Cui, H. L.-Woolard, D. L.-Jensen, K. L.-Buot, F. A., Equivalent circuit parameters of resonant tunneling diodes extracted from self-consistent Wigner-Poisson simulation, IEEE Transactions on Electron Devices, 48 (2001), 614-626.