Cauchy-Dirichlet problem in Morrey spaces for parabolic equations with discontinuous coefficients
Palagachev, Dian K. ; Ragusa, Maria A. ; Softova, Lubomira G.
Bollettino dell'Unione Matematica Italiana, Tome 6-A (2003), p. 667-683 / Harvested from Biblioteca Digitale Italiana di Matematica

Let QT be a cylinder in Rn+1 and x=x,tRn×R. It is studied the Cauchy-Dirichlet problem for the uniformly parabolic operator ut-i,j=1naijxDiju=fxq.o. in QT,ux=0su QT, in the Morrey spaces Wp,λ2,1QT, p1,, λ0,n+2, supposing the coefficients to belong to the class of functions with vanishing mean oscillation. There are obtained a priori estimates in Morrey spaces and Hölder regularity for the solution and its spatial derivatives.

Siano QT un cilindro in Rn+1 ed x=x,tRn×R. Si studia il problema di Cauchy-Dirichlet per l'operatore uniformemente parabolico ut-i,j=1naijxDiju=fxq.o. in QT,ux=0su QT, nell'ambito degli spazi di Morrey Wp,λ2,1QT, p1,, λ0,n+2 supponendo che i coefficienti della parte principale appartengano alla classe delle funzioni con oscillazione media infinitesima. Si ottengono inoltre delle stime a priori nei suddetti spazi, e regolarità Hölderiana della soluzione e della sua derivata spaziale.

Publié le : 2003-10-01
@article{BUMI_2003_8_6B_3_667_0,
     author = {Dian K. Palagachev and Maria A. Ragusa and Lubomira G. Softova},
     title = {Cauchy-Dirichlet problem in Morrey spaces for parabolic equations with discontinuous coefficients},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {6-A},
     year = {2003},
     pages = {667-683},
     zbl = {1121.35067},
     mrnumber = {2014826},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2003_8_6B_3_667_0}
}
Palagachev, Dian K.; Ragusa, Maria A.; Softova, Lubomira G. Cauchy-Dirichlet problem in Morrey spaces for parabolic equations with discontinuous coefficients. Bollettino dell'Unione Matematica Italiana, Tome 6-A (2003) pp. 667-683. http://gdmltest.u-ga.fr/item/BUMI_2003_8_6B_3_667_0/

[1] Acquistapace, P., On BMO regularity for linear elliptic systems, Ann. Mat. Pura Appl., 161 (1992), 231-269. | MR 1174819 | Zbl 0802.35015

[2] Bramanti, M., Commutators of integral operators with positive kernels, Le Matematiche, 49 (1994), 149-168. | MR 1386370 | Zbl 0840.42009

[3] Bramanti, M.-Cerutti, M. C., Wp1,2 solvability for the Cauchy-Dirichlet problem for parabolic equations with VMO coefficients, Comm. in Partial Diff. Equations, 18 (1993), 1735-1763. | MR 1239929 | Zbl 0816.35045

[4] Calderón, A. P.-Zygmund, A., On the existence of certain singular integrals, Acta. Math., 88 (1952), 85-139. | MR 52553 | Zbl 0047.10201

[5] Calderón, A. P.-Zygmund, A., Singular integral operators and differential equations, Amer. J. Math., 79 (1957), 901-921. | MR 100768 | Zbl 0081.33502

[6] Cannarsa, P., Second order nonvariational parabolic systems, Boll. Unione Mat. Ital., 18-C (1981), 291-315. | MR 631584 | Zbl 0473.35043

[7] Chiarenza, F.-Frasca, M., Morrey spaces and Hardy-Littlewood maximal functions, Rend. Mat. Appl., 7 (1987), 273-279. | MR 985999 | Zbl 0717.42023

[8] Chiarenza, F.-Frasca, M.-Longo, P., Interior W2,p estimates for nondivergence elliptic equations with discontinuous coefficients, Ric. Mat., 40 (1991), 149-168. | MR 1191890 | Zbl 0772.35017

[9] Chiarenza, F.-Frasca, M.-Longo, P., W2,p solvability of the Dirichlet problem for nondivergence form elliptic equations with VMO coefficients, Trans. Amer. Math. Soc., 336 (1993), 841-853. | MR 1088476 | Zbl 0818.35023

[10] Da Prato, G., Spazi Lp,θΩ,δ e loro proprietà, Ann. Mat. Pura Appl., 69 (1965), 383-392. | MR 192330 | Zbl 0145.16207

[11] Di Fazio, G.-Palagachev, D. K.-Ragusa, M. A., Global Morrey regularity of strong solutions to Dirichlet problem for elliptic equations with discontinuous coefficients, J. Funct. Anal., 166 (1999), 179-196. | MR 1707751 | Zbl 0942.35059

[12] Fabes, E. B.-Rivière, N., Singular integrals with mixed homogeneity, Studia Math., 27 (1966), 19-38. | MR 209787 | Zbl 0161.32403

[13] Gilbarg, D.-Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer-Verlag, Berlin, 1983. | MR 737190 | Zbl 0562.35001

[14] Guglielmino, F., Sulle equazioni paraboliche del secondo ordine di tipo non variazionale, Ann. Mat. Pura Appl.,65 (1964), 127-151. | MR 186940 | Zbl 0141.29202

[15] John, F.-Nirenberg, L., On functions of bounded mean oscillation, Comm. Pure Appl. Math., 14 (1961), 415-426. | MR 131498 | Zbl 0102.04302

[16] Ladyzhenskaya, O. A.-Solonnikov, V. A.-Ural'Tseva, N. N., Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monographs, Vol. 23, Amer. Math. Soc., Providence, R.I.1968. | Zbl 0174.15403

[17] Maugeri, A.-Palagachev, D. K.-Softova, L. G., Elliptic and Parabolic Equations with Discontinuous Coefficients, Wiley-VCH, Berlin, 2000. | MR 2260015 | Zbl 0958.35002

[18] Palagachev, D. K.-Ragusa, M. A.-Softova, L. G., Regular oblique derivative problem in Morrey spaces, Electr. J. Diff. Equations, 2000 (2000), No. 39, 1-17. | MR 1764709 | Zbl 1002.35033

[19] Palagachev, D.K.-Softova, L.G., Singular integral operators with mixed homogeneity in Morrey spacesC. R. Acad. Bulgare Sci., 54 (2001), No. 11, 11-16. | MR 1878039 | Zbl 0983.42008

[20] Sarason, D., Functions of vanishing mean oscillation, Trans. Amer. Math. Soc., 207 (1975), 391-405. | MR 377518 | Zbl 0319.42006

[21] Softova, L. G., Regular oblique derivative problem for linear parabolic equations with VMO principal coefficients, Manuscr. Math., 103, No. 2 (2000), 203-220. | MR 1796316 | Zbl 0963.35032

[22] Softova, L. G., Morrey regularity of strong solutions to parabolic equations with VMO coefficients, C. R. Acad. Sci., Paris, Ser. I, Math., 333, No. 7 (2001), 635-640. | MR 1868228 | Zbl 0990.35035

[23] Softova, L. G., Parabolic equations with VMO coefficients in Morrey spaces, Electr. J. Diff. Equations, 2001, No. 51 (2001), 1-25. | MR 1846667 | Zbl 1068.35517