Let be the Heisenberg group of dimension . Let be the partial sub-Laplacians on and the central element of the Lie algebra of . We prove that the kernel of the operator is in the Schwartz space if . We prove also that the kernel of the operator is in if and that the kernel of the operator is in if . Here is the Kohn-Laplacian on .
Sia il gruppo di Heisenberg di dimensione . Siano i sub-Laplaciani parziali su e l'elemento centrale dell'algebra di Lie di . In questo lavoro dimostriamo che, data una funzione appartenente allo spazio di Schwartz , il nucleo dell'operatore è una funzione in . Inoltre dimostriamo che, date altre due funzioni e , i nuclei degli operatori e stanno in . Qui è il sub-Laplaciano su .
@article{BUMI_2003_8_6B_3_657_0, author = {Alessandro Veneruso}, title = {Schwartz kernels on the Heisenberg group}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {6-A}, year = {2003}, pages = {657-666}, zbl = {1178.43007}, mrnumber = {2014825}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2003_8_6B_3_657_0} }
Veneruso, Alessandro. Schwartz kernels on the Heisenberg group. Bollettino dell'Unione Matematica Italiana, Tome 6-A (2003) pp. 657-666. http://gdmltest.u-ga.fr/item/BUMI_2003_8_6B_3_657_0/
[1] The spherical transform of a Schwartz function on the Heisenberg group, J. Funct. Anal., 154 (1998), 379-423. | MR 1612717 | Zbl 0914.22013
- - ,[2] Spectra for Gelfand pairs associated with the Heisenberg group, Colloq. Math., 71 (1996), 305-328. | MR 1414831 | Zbl 0876.22011
- - - ,[3] Subadditivity of homogeneous norms on certain nilpotent Lie groups, Proc. Amer. Math. Soc., 83 (1981), 69-70. | MR 619983 | Zbl 0475.43010
,[4] | MR 657581 | Zbl 0508.42025
- , Hardy spaces on homogeneous groups, Princeton University Press, Princeton, 1982.[5] A functional calculus for Rockland operators on nilpotent Lie groups, Studia Math., 78 (1984), 253-266. | MR 782662 | Zbl 0595.43007
,[6] Remarks on the Cauchy integral and the conjugate function in generalized half-planes, J. Math. Mech., 19 (1970), 1069-1081. | MR 265626 | Zbl 0197.36002
- - ,[7] Maximal operators and Riesz means on stratified groups, Symposia Math., 29 (1987), 47-62. | MR 951178 | Zbl 0659.22009
, , Topological vector spaces, distributions and kernels, Academic Press, New York, 1967.