In questo lavoro consideriamo il problema di Dirichlet associato ad un'equazione generale di Monge-Ampère: \begin{equation*}\tag{} \begin{cases} \det (u_{ij}+a_{ij}(x,u, \nabla u))=K(x) f(x,u, \nabla u) & \text{in } \Omega \subset \mathbb{R}^{n} \\ u|_{\partial\Omega} = \varphi \end{cases} \end{equation*} dove la curvatura soddisfa in , su , ed è strettamente positivo. Proviamo che se i dati , , , , sono in una classe di Gevrey, ogni soluzione ( se ) del problema sta nella stessa classe di Grevey su .
We consider in this work the Dirichlet problem associated to a general Monge-Ampère equation: \begin{equation*}\tag{} \begin{cases} \det (u_{ij}+a_{ij}(x,u, \nabla u))=K(x) f(x,u, \nabla u) & \text{in } \Omega \subset \mathbb{R}^{n} \\ u|_{\partial\Omega} = \varphi \end{cases} \end{equation*} where the curvature satisfies: in , on , and is strictly positive. We prove that if the data , , , , are in a Gevrey class, every solution ( if ) of problem is in the same Gevrey class on .
@article{BUMI_2003_8_6B_3_629_0, author = {Saoussen Kallel-Jallouli}, title = {R\'egularit\'e Gevrey des solutions de l'\'equation de Monge-Amp\`ere r\'eelle}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {6-A}, year = {2003}, pages = {629-656}, zbl = {1178.35111}, mrnumber = {2014824}, language = {fr}, url = {http://dml.mathdoc.fr/item/BUMI_2003_8_6B_3_629_0} }
Kallel-Jallouli, Saoussen. Régularité Gevrey des solutions de l'équation de Monge-Ampère réelle. Bollettino dell'Unione Matematica Italiana, Tome 6-A (2003) pp. 629-656. http://gdmltest.u-ga.fr/item/BUMI_2003_8_6B_3_629_0/
[1] Régularité analytique et itérés d'opérateurs elliptiques dégénérés; Applications, Journal of Functional Analysis, 9 (1972), 208-248. | Zbl 0243.35044
- ,[2] Etude de l'analyticité et de la régularité Gevrey pour une classe d'opérateurs elliptiques dégénérés, Extrait des Annales Scientifiques de l'Ec. Norm. Sup., 4ème série, t. 4, fasc. 1, 1971. | MR 287159 | Zbl 0231.35032
- ,[3] The Dirichlet problem for nonlinear second-order elliptic equations I. Monge-Ampère equation, Comm. on Pure and Appl. Math., Vol. XXXVII (1984), 369-402. | MR 739925 | Zbl 0598.35047
- - ,[4] On the regularity of the solution of the -dimentional Minkowski problem, Comm. on Pure and Appl. Math., Vol. XXIX (1976). | MR 423267 | Zbl 0363.53030
- ,[5] Régularité analytique et Gevrey d'opérateurs elliptiques dégénérés, J. Math. Pures et Appl., 52 (1973), 65-80. | MR 390474 | Zbl 0263.35020
- ,[6] Estimations Höldériennes et pour une classe de problèmes linéaires singulièrs. Application à la régularité des solutions de problèmes aux limites singuliers non linéaires, Thèse de 3ème cycle (1987).
,[7] et Hölder estimates for a class of degenerate elliptic boundary value problems. Application to the Monge-Ampère equation, Comm. in Partial Diff. Equ., 16 (1991), 997-1031. | MR 1116851 | Zbl 0742.35009
- ,[8] | MR 404822 | Zbl 0108.09301
, Linear partial differential operators, Springer Verlag, 1963.[9] The local isometric embedding in of -dimentional Riemannian manifolds with non negative curvature, J. Diff. Geometry, 21 (1985), 213-230. | MR 816670 | Zbl 0584.53002
,[10] On the regularity of generalized solutions of the equation , Soviet Math. Dokl., Vol. 12 (1971), no. 5=Dokl. Nank SSSR, Tom. 200 (1971), no. 3. | MR 293227 | Zbl 0246.35014
,[11] The Minkowski multidimentional problem, USSR Academy of Sciences, 1978. | Zbl 0387.53023
,[12] Sur la régularité des solutions non strictement convexes de l'équation de Monge-Ampère réelle, Annali. Della Sc. N. Sup. di Pisa, Série 4, Vol. 15, 1988. | MR 1029853 | Zbl 0702.35050
,