Two suitable composition laws are defined in a regular permutation set in order to find new characterizations of some important classes of loops.
Utilizzando insiemi regolari di permutazioni e due operazioni opportunamente definite, si ottengono nuove caratterizzazioni di importanti classi di cappi.
@article{BUMI_2003_8_6B_3_617_0,
author = {Rita Capodaglio},
title = {Regular permutation sets and loops},
journal = {Bollettino dell'Unione Matematica Italiana},
volume = {6-A},
year = {2003},
pages = {617-628},
zbl = {1119.20057},
mrnumber = {2014823},
language = {en},
url = {http://dml.mathdoc.fr/item/BUMI_2003_8_6B_3_617_0}
}
Capodaglio, Rita. Regular permutation sets and loops. Bollettino dell'Unione Matematica Italiana, Tome 6-A (2003) pp. 617-628. http://gdmltest.u-ga.fr/item/BUMI_2003_8_6B_3_617_0/
[1] , A survey of binary systems, Springer Verlag (1971). | MR 93552 | Zbl 0206.30301
[2] -, Loops whose inner mappings are automorphisms, Ann. of Math., 63 (1956), 308-323. | MR 76779 | Zbl 0074.01701
[3] , Finite Bol loops, Math. Proc. Camb. Phil. Soc., 84 (1978), 337-389. | MR 492030 | Zbl 0385.20043
[4] , Cappi e Permutazioni, Note di Matem., III (1983), 229-243. | MR 791347
[5] , TWO LOOPS IN THE ABSOLUTE PLANE. TO APPEAR | MR 2106662 | Zbl 1088.20038
[6] -, On a Permutation Representation for Finite Loops, Ist. Lomb. (Rend.) A, 124 (1990), 15-22. | MR 1267845 | Zbl 0755.20018
[7] , Simple Moufang loops, Math. Proc. Camb. Phil. Soc., 83 (1978), 377-392. | MR 492031 | Zbl 0381.20054
[8] , Recent developments on absolute geometries and algebraization by Kloops, Discr. Math., 208/209 (1999), 387-409 | MR 1725545 | Zbl 0941.51002
[9] , - , A Geometric Construction of the -Loop of a Hyperbolic Space, Geom. Dedicata, 58 (1995), 227-236 | MR 1358454 | Zbl 0845.51002
[10] -, Groups with an involutory antiautomorphism and -loops, application to space-time-world and hyperbolic geometry I, Results Math., 23 (1993), 338-354. | MR 1215219 | Zbl 0788.20034
[11] , -loops from classical groups over ordered fields, J. Geom., 61 (1998), 105-127. | MR 1603817 | Zbl 0904.20051
[12] , Theory of -Loops, Springer2002. | MR 1899153 | Zbl 0997.20059
[13] , Geometry of homogeneous Lie loops, Hiroshima Math. J, 5 (1975), 141-179. | MR 383301 | Zbl 0304.53037
[14] , Inner mappings of Bruck loops, Math. Proc. Camb. Phil. Soc., 123 (1998), 53-58. | MR 1474864 | Zbl 0895.20052
[15] -, On -loops of finite order, Results Math., 25 (1994), 79-102. | MR 1262088 | Zbl 0803.20052
[16] -, Loops in Group Theory and Lie Theory, de Gruyter, Berlin, New York2002. | MR 1899331 | Zbl 1050.22001
[17] , Quasigroups and Loops: Introduction, Heldermann, Berlin1990. | MR 1125767 | Zbl 0715.20043
[18] , Bol Loops, Trans. Amer. Math. Soc., 123 (1966), 341-354. | MR 194545 | Zbl 0163.02001
[19] , The relativistic noncommutative nonassociative group of velocities and the Thomas rotation, Results Math., 16 (1989), 168-179. | MR 1020224 | Zbl 0693.20067
[20] , Weakly associative groups, Results Math., 17 (1990), 149-168. | MR 1039282 | Zbl 0699.20055
[21] -, Gruppi corpi equazioni, Feltrinelli (1963). | MR 204234 | Zbl 0178.04201