Regular permutation sets and loops
Capodaglio, Rita
Bollettino dell'Unione Matematica Italiana, Tome 6-A (2003), p. 617-628 / Harvested from Biblioteca Digitale Italiana di Matematica

Two suitable composition laws are defined in a regular permutation set in order to find new characterizations of some important classes of loops.

Utilizzando insiemi regolari di permutazioni e due operazioni opportunamente definite, si ottengono nuove caratterizzazioni di importanti classi di cappi.

Publié le : 2003-10-01
@article{BUMI_2003_8_6B_3_617_0,
     author = {Rita Capodaglio},
     title = {Regular permutation sets and loops},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {6-A},
     year = {2003},
     pages = {617-628},
     zbl = {1119.20057},
     mrnumber = {2014823},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2003_8_6B_3_617_0}
}
Capodaglio, Rita. Regular permutation sets and loops. Bollettino dell'Unione Matematica Italiana, Tome 6-A (2003) pp. 617-628. http://gdmltest.u-ga.fr/item/BUMI_2003_8_6B_3_617_0/

[1] Bruck, R. H., A survey of binary systems, Springer Verlag (1971). | MR 93552 | Zbl 0206.30301

[2] Bruck, R. H.-Paige, L. J., Loops whose inner mappings are automorphisms, Ann. of Math., 63 (1956), 308-323. | MR 76779 | Zbl 0074.01701

[3] Burn, R. P., Finite Bol loops, Math. Proc. Camb. Phil. Soc., 84 (1978), 337-389. | MR 492030 | Zbl 0385.20043

[4] Capodaglio, R., Cappi e Permutazioni, Note di Matem., III (1983), 229-243. | MR 791347

[5] Capodaglio, R., TWO LOOPS IN THE ABSOLUTE PLANE. TO APPEAR | MR 2106662 | Zbl 1088.20038

[6] Capodaglio, R.-Verardi, L., On a Permutation Representation for Finite Loops, Ist. Lomb. (Rend.) A, 124 (1990), 15-22. | MR 1267845 | Zbl 0755.20018

[7] Doro, S., Simple Moufang loops, Math. Proc. Camb. Phil. Soc., 83 (1978), 377-392. | MR 492031 | Zbl 0381.20054

[8] Karzel, H., Recent developments on absolute geometries and algebraization by Kloops, Discr. Math., 208/209 (1999), 387-409 | MR 1725545 | Zbl 0941.51002

[9] Karzel, H., - Wefelsheid, H., A Geometric Construction of the K-Loop of a Hyperbolic Space, Geom. Dedicata, 58 (1995), 227-236 | MR 1358454 | Zbl 0845.51002

[10] Karzel, H.-Wefelsheid, H., Groups with an involutory antiautomorphism and K-loops, application to space-time-world and hyperbolic geometry I, Results Math., 23 (1993), 338-354. | MR 1215219 | Zbl 0788.20034

[11] Kiechle, H., K-loops from classical groups over ordered fields, J. Geom., 61 (1998), 105-127. | MR 1603817 | Zbl 0904.20051

[12] Kiechle, H., Theory of K-Loops, Springer2002. | MR 1899153 | Zbl 0997.20059

[13] Kikkawa, M., Geometry of homogeneous Lie loops, Hiroshima Math. J, 5 (1975), 141-179. | MR 383301 | Zbl 0304.53037

[14] Kreuzer, A., Inner mappings of Bruck loops, Math. Proc. Camb. Phil. Soc., 123 (1998), 53-58. | MR 1474864 | Zbl 0895.20052

[15] Kreuzer, A.-Wefelscheid, H., On K-loops of finite order, Results Math., 25 (1994), 79-102. | MR 1262088 | Zbl 0803.20052

[16] Nagy, P. T.-Strambach, K., Loops in Group Theory and Lie Theory, de Gruyter, Berlin, New York2002. | MR 1899331 | Zbl 1050.22001

[17] Pflugfelder, H. O., Quasigroups and Loops: Introduction, Heldermann, Berlin1990. | MR 1125767 | Zbl 0715.20043

[18] Robinson, D. A., Bol Loops, Trans. Amer. Math. Soc., 123 (1966), 341-354. | MR 194545 | Zbl 0163.02001

[19] Ungar, A. A., The relativistic noncommutative nonassociative group of velocities and the Thomas rotation, Results Math., 16 (1989), 168-179. | MR 1020224 | Zbl 0693.20067

[20] Ungar, A. A., Weakly associative groups, Results Math., 17 (1990), 149-168. | MR 1039282 | Zbl 0699.20055

[21] Zappa, G.-Permutti, R., Gruppi corpi equazioni, Feltrinelli (1963). | MR 204234 | Zbl 0178.04201