Pronormal and subnormal subgroups and permutability
Beidleman, James ; Heineken, Hermann
Bollettino dell'Unione Matematica Italiana, Tome 6-A (2003), p. 605-615 / Harvested from Biblioteca Digitale Italiana di Matematica

We describe the finite groups satisfying one of the following conditions: all maximal subgroups permute with all subnormal subgroups, (2) all maximal subgroups and all Sylow p-subgroups for p<7 permute with all subnormal subgroups.

Trattiamo gruppi finiti che soddisfano una delle condizioni seguenti: (1) I sottogruppi massimali permutano con i sottogruppi subnormali, (2) I sottogruppi massimali ed i p-sottogruppi di Sylow p<7 permutano con i sottogruppi subnormali.

Publié le : 2003-10-01
@article{BUMI_2003_8_6B_3_605_0,
     author = {James Beidleman and Hermann Heineken},
     title = {Pronormal and subnormal subgroups and permutability},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {6-A},
     year = {2003},
     pages = {605-615},
     zbl = {1147.20301},
     mrnumber = {2014822},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2003_8_6B_3_605_0}
}
Beidleman, James; Heineken, Hermann. Pronormal and subnormal subgroups and permutability. Bollettino dell'Unione Matematica Italiana, Tome 6-A (2003) pp. 605-615. http://gdmltest.u-ga.fr/item/BUMI_2003_8_6B_3_605_0/

[1] Agrawal, R. K., Finite groups whose subnormal subgroups permute with all Sylow subgroups, Proc. Amer. Math. Soc., 47 (1975), 77-83. | MR 364444 | Zbl 0299.20014

[2] Alejandre, M.-Ballester-Bolinches, A.-Pedraza-Aguilera, M. C., Finite Soluble Groups with Permutable Subnormal Subgroups, J. Algebra, 240 (2001), 705-722. | MR 1841353 | Zbl 0983.20014

[3] Baer, R.Überauflösbare Gruppen, Abh. Math. Sem. Univ. Hamburg, 23(1959), 11-28. | MR 103925 | Zbl 0092.02004

[4] Beidleman, J. C.-Brewster, B.-Robinson, D. J. S., Criteria for permutability to be transitive in finite groups, J. Algebra, 222 (1999), 400-412. | MR 1733679 | Zbl 0948.20015

[5] Beidleman, J. C.-Heineken, H., Finite Soluble Groups Whose Subnormal Subgroups Permute With Certain Classes of Subgroups, J. Group Theory (to appear). | Zbl 1045.20012

[6] Conway, J. H.-Curtiss, R. T.-Norton, S. P.-Parker, R. A.-Wilson, R. A., Atlas of finite groups, Clarendon Press, Oxford, 1985. | MR 827219 | Zbl 0568.20001

[7] Bryce, R. A.-Cossey, J., The Wielandt subgroup of a finite soluble group, J. London Math. Soc., 40 (1989), 244-256. | MR 1044272 | Zbl 0734.20010

[8] Gaschütz, W., Gruppen, in denen das Normalteilersein transitivist, J. reine angew Math., 198 (1957), 87-92. | MR 91277 | Zbl 0077.25003

[9] Gorenstein, D., Finite Simple Groups, Plenum Press, New York and London, 1982. | MR 698782 | Zbl 0483.20008

[10] Huppert, B., Normalteiler und maximale Untergruppen endlicher Gruppen, Math. Z., 60 (1954), 409-434. | MR 64771 | Zbl 0057.25303

[11] Kegel, O. H., Sylow-Gruppen und Subnormalteiler endlicher Gruppen, Math. Z., 78 (1962), 205-221. | MR 147527 | Zbl 0102.26802

[12] Maier, R., Zur Vertauschbarkeit und Subnormalität von Untergruppen, Arch. Math., 53 (1989), 110-120. | MR 1004266 | Zbl 0673.20012

[13] Peng, T. A., Finite groups with pronormal subgroups, Proc. Amer. Math. Soc., 20 (1969), 232-234. | MR 232850 | Zbl 0167.02302

[14] Robinson, D. J. S., A note on finite groups in which normality is transitive, Proc. Amer. Math. Soc., 19 (1968), 933-937. | MR 230808 | Zbl 0159.31002

[15] Robinson, D. J. S., A survey of groups in which normality or permutability is transitive, (Indian National Science Academy, New Delhi1999), 171-181. | MR 1690796 | Zbl 0952.20017

[16] Robinson, D. J. S., The Structure of Finite Groups in which Permutability is a Transitive Relation, J. Austral. Math. Soc., 70 (2001), 143-159. | MR 1815277 | Zbl 0997.20027

[17] Zacher, G., I gruppi risolubili finiti in cui i sottogruppi di composizione coincidano con i sottogruppi quasi-normali, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 37 (1964), 150-154. | MR 174633 | Zbl 0136.28302