We state and prove a chain rule formula for the composition of a vector-valued function by a globally Lipschitz-continuous, piecewise function . We also prove that the map is continuous from into for the strong topologies of these spaces.
Si enuncia e si dimostra una formula di derivazione per funzioni ottenute componendo una funzione a valori vettoriali con una funzione globalmente lipschitziana e a tratti. Si dimostra inoltre che l'applicazione è continua da in rispetto alle topologie forti di questi spazi.
@article{BUMI_2003_8_6B_3_581_0,
author = {Fran\c cois Murat and Cristina Trombetti},
title = {A chain rule formula for the composition of a vector-valued function by a piecewise smooth function},
journal = {Bollettino dell'Unione Matematica Italiana},
volume = {6-A},
year = {2003},
pages = {581-595},
zbl = {1179.46037},
mrnumber = {2014820},
language = {en},
url = {http://dml.mathdoc.fr/item/BUMI_2003_8_6B_3_581_0}
}
Murat, François; Trombetti, Cristina. A chain rule formula for the composition of a vector-valued function by a piecewise smooth function. Bollettino dell'Unione Matematica Italiana, Tome 6-A (2003) pp. 581-595. http://gdmltest.u-ga.fr/item/BUMI_2003_8_6B_3_581_0/
[AD] -, A general chain rule for distributional derivatives, Proc. Amer. Math. Soc., 108 (1990), 691-702. | MR 969514 | Zbl 0685.49027
[BM] -, Remarques sur l'homogénéisation de certains problèmes quasi-linéaires, Portugaliæ Math., 41 (1982), 535-562. | MR 766874 | Zbl 0524.35042
[B] , Renormalized solutions to the Vlasov equation with coefficients of bounded variation, Arch. Rat. Mech. Anal., 157 (2001), 75-90. | MR 1822415 | Zbl 0979.35032
[KS] -, An introduction to variational inequalities and their applications, Academic Press, New York (1980). | MR 567696 | Zbl 0457.35001
[L] , On the existence of weak solutions of perturbated systems with critical growth, J. reine angew. Math., 393 (1989), 21-38. | MR 972359 | Zbl 0664.35027
[MM1] -, Absolute continuity on tracks and mappings of Sobolev spaces, Arch. Rat. Mech. Anal., 45 (1972), 294-320. | MR 338765 | Zbl 0236.46033
[MM2] -, Nemitsky operators on Sobolev spaces, Arch. Rat. Mech. Anal., 51 (1973), 347-370. | MR 348480 | Zbl 0266.46029
[S] , Equations elliptiques du second ordre à coefficients discontinus, Séminaire de Mathématiques Supérieures, 16, Les Presses de l'Université de Montréal, Montréal (1966). | MR 251373 | Zbl 0151.15501