Topological manifolds and real algebraic geometry
Tognoli, Alberto
Bollettino dell'Unione Matematica Italiana, Tome 6-A (2003), p. 545-555 / Harvested from Biblioteca Digitale Italiana di Matematica

We study the problem of approximating, up to homotopy, compact topological manifolds by real algebraic varieties. As a consequence, we realize any integral non-degenerate quadratic form as the intersection form of a real algebraic variety. This is related to a well-known result, due to Freedman [F], on the topology of closed simply-connected topological 4-manifolds.

Si studia il problema di approssimazione, a meno di omotopia, delle varietà topologiche compatte di dimensione 4 con varietà algebriche. Come conseguenza si prova che ogni forma quadratica intera non degenere è la forma di intersezione di una varietà algebrica reale di dimensione 4. Questi risultati sono legati ai ben noti lavori di Freedman sulla topologia delle varietà compatte, semplicemente connesse di dimensione 4.

Publié le : 2003-10-01
@article{BUMI_2003_8_6B_3_545_0,
     author = {Alberto Tognoli},
     title = {Topological manifolds and real algebraic geometry},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {6-A},
     year = {2003},
     pages = {545-555},
     zbl = {1178.57019},
     mrnumber = {2014817},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2003_8_6B_3_545_0}
}
Tognoli, Alberto. Topological manifolds and real algebraic geometry. Bollettino dell'Unione Matematica Italiana, Tome 6-A (2003) pp. 545-555. http://gdmltest.u-ga.fr/item/BUMI_2003_8_6B_3_545_0/

[AK] Akbulut, S.-King, H., The topology of real algebraic sets with isolated singularities, Ann. of Math., 113 (1981), 425-446. | MR 621011 | Zbl 0494.57004

[BR] Benedetti, R.-Risler, J. J., Real algebraic and semialgebraic sets, Hermann, Paris (1990). | MR 1070358 | Zbl 0694.14006

[B] Beretta, L., Extension of maps and ordering, Ann. Univ. Ferrara, 44 (1998), 9-25. | MR 1744138 | Zbl 0952.54010

[C] Cavicchioli, A., Sulla classificazione topologica delle varietà, Boll. Un. Mat. Ital. (7), 9-B (1995), 633-682. | Zbl 0857.57019

[CHS] Cavicchioli, A.-Hegenbarth, F.-Spaggiari, F., A splitting theorem for homotopy equivalent smooth 4-manifolds, Rendiconti di Matematica Ser. VII, 17 (1997), 523-539. | MR 1608716 | Zbl 0890.57032

[CFHS] Curtis, C. L.-Freedman, M. H.-Hsiang, W. C.-Stong, R., A decomposition theorem for h-cobordant smooth simply-connected compact 4-manifolds, Invent. Math., 123 (1996), 343-348. | MR 1374205 | Zbl 0843.57020

[D1] Donaldson, S., An application of gauge theory to four-dimensional topology, J. Differential Geom., 18 (1983), 269-315. | MR 710056 | Zbl 0507.57010

[D2] Donaldson, S., Connections, cohomology and the intersection forms of 4-manifolds, J. Differential Geom., 24 (1986), 275-341. | MR 868974 | Zbl 0635.57007

[D3] Donaldson, S., The orientation of Yang-Mills moduli spaces and four-dimensional topology, J. Differential Geom., 26 (1987), 397-428. | MR 910015 | Zbl 0683.57005

[D4] Donaldson, S., Irrationality and the h-cobordism conjecture, J. Differential Geom., 26 (1987), 141-168. | MR 892034 | Zbl 0631.57010

[F] Freedman, M. H., The topology of four-dimensional manifolds, J. Differential Geom., 17 (1982), 357-453. | MR 679066 | Zbl 0528.57011