We study the problem of approximating, up to homotopy, compact topological manifolds by real algebraic varieties. As a consequence, we realize any integral non-degenerate quadratic form as the intersection form of a real algebraic variety. This is related to a well-known result, due to Freedman [F], on the topology of closed simply-connected topological -manifolds.
Si studia il problema di approssimazione, a meno di omotopia, delle varietà topologiche compatte di dimensione con varietà algebriche. Come conseguenza si prova che ogni forma quadratica intera non degenere è la forma di intersezione di una varietà algebrica reale di dimensione . Questi risultati sono legati ai ben noti lavori di Freedman sulla topologia delle varietà compatte, semplicemente connesse di dimensione 4.
@article{BUMI_2003_8_6B_3_545_0, author = {Alberto Tognoli}, title = {Topological manifolds and real algebraic geometry}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {6-A}, year = {2003}, pages = {545-555}, zbl = {1178.57019}, mrnumber = {2014817}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2003_8_6B_3_545_0} }
Tognoli, Alberto. Topological manifolds and real algebraic geometry. Bollettino dell'Unione Matematica Italiana, Tome 6-A (2003) pp. 545-555. http://gdmltest.u-ga.fr/item/BUMI_2003_8_6B_3_545_0/
[AK] The topology of real algebraic sets with isolated singularities, Ann. of Math., 113 (1981), 425-446. | MR 621011 | Zbl 0494.57004
- ,[BR] | MR 1070358 | Zbl 0694.14006
- , Real algebraic and semialgebraic sets, Hermann, Paris (1990).[B] Extension of maps and ordering, Ann. Univ. Ferrara, 44 (1998), 9-25. | MR 1744138 | Zbl 0952.54010
,[C] Sulla classificazione topologica delle varietà, Boll. Un. Mat. Ital. (7), 9-B (1995), 633-682. | Zbl 0857.57019
,[CHS] A splitting theorem for homotopy equivalent smooth -manifolds, Rendiconti di Matematica Ser. VII, 17 (1997), 523-539. | MR 1608716 | Zbl 0890.57032
- - ,[CFHS] A decomposition theorem for -cobordant smooth simply-connected compact -manifolds, Invent. Math., 123 (1996), 343-348. | MR 1374205 | Zbl 0843.57020
- - - ,[D1] An application of gauge theory to four-dimensional topology, J. Differential Geom., 18 (1983), 269-315. | MR 710056 | Zbl 0507.57010
,[D2] Connections, cohomology and the intersection forms of -manifolds, J. Differential Geom., 24 (1986), 275-341. | MR 868974 | Zbl 0635.57007
,[D3] The orientation of Yang-Mills moduli spaces and four-dimensional topology, J. Differential Geom., 26 (1987), 397-428. | MR 910015 | Zbl 0683.57005
,[D4] Irrationality and the -cobordism conjecture, J. Differential Geom., 26 (1987), 141-168. | MR 892034 | Zbl 0631.57010
,[F] The topology of four-dimensional manifolds, J. Differential Geom., 17 (1982), 357-453. | MR 679066 | Zbl 0528.57011
,