We study degenerate elliptic problems of the type \begin{equation} \begin{cases} - \text{div}\, \left( \frac{\nabla u }{(1+|u|)^{\theta}} \right) = f & \text{in } \Omega \\ u=0 & \text{on } \Omega. \end{cases} \end{equation}
Si studiano problemi ellittici degeneri del tipo \begin{equation} \begin{cases} - \text{div}\, \left( \frac{\nabla u }{(1+|u|)^{\theta}} \right) = f & \text{in } \Omega \\ u=0 & \text{on } \Omega. \end{cases} \end{equation}
@article{BUMI_2003_8_6B_3_521_0,
author = {Lucio Boccardo and Ha\"\i m Brezis},
title = {Some remarks on a class of elliptic equations with degenerate coercivity},
journal = {Bollettino dell'Unione Matematica Italiana},
volume = {6-A},
year = {2003},
pages = {521-530},
zbl = {1178.35183},
mrnumber = {2014815},
language = {en},
url = {http://dml.mathdoc.fr/item/BUMI_2003_8_6B_3_521_0}
}
Boccardo, Lucio; Brezis, Haïm. Some remarks on a class of elliptic equations with degenerate coercivity. Bollettino dell'Unione Matematica Italiana, Tome 6-A (2003) pp. 521-530. http://gdmltest.u-ga.fr/item/BUMI_2003_8_6B_3_521_0/
[1] --, A priori estimates for a class of non uniformly elliptic equations, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), suppl., 381-391. | MR 1645729 | Zbl 0911.35025
[2] ----, Existence results for nonlinear elliptic equations with degenerate coercivity, preprint. | MR 1970464 | Zbl 1105.35040
[3] -----, An theory of existence and uniqueness of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22 (1995), 240-273. | MR 1354907 | Zbl 0866.35037
[4] --, A semilinear equation in , Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2, no. 4 (1975), 523-555. | MR 390473 | Zbl 0314.35077
[5] --: Existence and regularity results for some elliptic equations with degenerate coercivity, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), suppl., 51-81. | MR 1645710 | Zbl 0911.35049
[6] -: Nonlinear elliptic equations with right-hand side measures, Comm. Partial Differential Equations, 17 (1992), 641-655. | MR 1163440 | Zbl 0812.35043
[7] -, -regularity of solutions of some nonlinear elliptic problems, preprint.
[8] -, Semi-linear second-order elliptic equations in , J. Math. Soc. Japan, 25 (1973), 565-590. | MR 336050 | Zbl 0278.35041
[9] -: On some nonlinear elliptic differential-functional equations, Acta Math., 115 (1966), 271-310. | MR 206537 | Zbl 0142.38102
[10] , Uniqueness and homogenization for a class of non coercive operators in divergence form, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), suppl., 915-936. | MR 1645762 | Zbl 0914.35049
[11] , Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble), 15 (1965), 189-258. | MR 192177 | Zbl 0151.15401