We investigate sequences of nonlinear Dirichlet problems of the form \begin{equation*} \tag{} \begin{cases} -\text{div}\,(|Du_{h}|^{p-2} Du_{h})=g, \& \text{in } D \setminus E_{h} \\ u_{h}\in H^{1,p}_{0}(D \setminus E_{h}). \end{cases} \end{equation*} where and are random subsets of a bounded open set of . By means of a variational approach, we study the asymptotic behaviour of solutions of , characterizing the limit problem for suitable sequences of random sets.
Attraverso un metodo variazionale, si studia un processo di omogeneizzazione relativo al -Laplaciano in regioni perforate in maniera stocastica. Per particolari distribuzioni aleatorie dei buchi si caratterizza pienamente il problema limite.
@article{BUMI_2003_8_6B_2_435_0, author = {M. Balzano and T. Durante}, title = {The $p$-Laplacian in domains with small random holes}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {6-A}, year = {2003}, pages = {435-458}, zbl = {1177.35061}, mrnumber = {1988215}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2003_8_6B_2_435_0} }
Balzano, M.; Durante, T. The $p$-Laplacian in domains with small random holes. Bollettino dell'Unione Matematica Italiana, Tome 6-A (2003) pp. 435-458. http://gdmltest.u-ga.fr/item/BUMI_2003_8_6B_2_435_0/
[1] Random Relaxed Dirichlet Problems, Ann. Mat. Pura Appl. (IV), 153 (1988), 133-174. | MR 1008342 | Zbl 0673.60067
,[2] Nonlinear Dirichlet problems in randomly perforated domains, Rendiconti di Matematica e delle sue Appl., 17 (1997), 163-186. | MR 1484930 | Zbl 0886.49017
- - ,[3] On the asymptotic behaviour of Dirichlet problems in a Riemannian manifold less small random holes, Rend. Sem. Mat. Univ. Padova, 100 (1998). | MR 1675287 | Zbl 0922.31008
- ,[4] Asymptotic capacities for finely divided bodies and stopped diffusions, Illinois J. Math., 31 (1987), 469-495. | MR 892182 | Zbl 0618.60072
- ,[5] Comportamento asintotico delle soluzioni di problemi di Dirichlet, Conference XV Congress U.M.I. (Padova, Italy) 1995 - Boll. Un. Mat. Ital. (7), 11-A (1997), 253-277. | MR 1477778 | Zbl 0884.31002
,[6] Limits of nonlinear Dirichlet problems in varying domains, Manuscripta Math., 61 (1988), 251-278. | MR 949817 | Zbl 0653.49017
- ,[7] The Laplacian in regions with many small obstacles: fluctuation aroun the limit operator, J. Statist. Phys., 41 (1985), 465-487. | MR 814842 | Zbl 0642.60053
- - ,[8] -superharmonic functions and supersolutions of degenerate ellipitic equations, Arkiv för Matematik, 26 (1988), 87-105. | MR 948282 | Zbl 0652.31006
- ,[9] | MR 1207810 | Zbl 0780.31001
- - , Nonlinear potential theory of degenerate ellipitic equations, Oxford Mathematical Monographs - Clarendon Press, 1993.[10] Probabilistic methods in some problems of scattering theory, Rocky Mountain J. Math., 4 (1974), 511-538. | MR 510113 | Zbl 0314.47006
,[11] Random media and the eigenvalues of the Laplacian, Comm. Math. Phys., 94 (1984), 421-437. | MR 763745 | Zbl 0555.35101
,[12] Diffusion in regions with many small holes, Stochastic Differential Systems, Filtering and Control. Proc. of the IFIPWG 7/1 Working Conference (Vilnius, Lithuania, 1978), 190-206. Lectures Notes in Control and Information Sci., 25, Springer-Verlag, Berlin (1980). | MR 609184 | Zbl 0485.60076
- , , Weakly Differentiable Functions, Springer-Verlag, 1989.