The p-Laplacian in domains with small random holes
Balzano, M. ; Durante, T.
Bollettino dell'Unione Matematica Italiana, Tome 6-A (2003), p. 435-458 / Harvested from Biblioteca Digitale Italiana di Matematica

We investigate sequences of nonlinear Dirichlet problems of the form \begin{equation*} \tag{Ph} \begin{cases} -\text{div}\,(|Du_{h}|^{p-2} Du_{h})=g, \& \text{in } D \setminus E_{h} \\ u_{h}\in H^{1,p}_{0}(D \setminus E_{h}). \end{cases} \end{equation*} where 2pn and Eh are random subsets of a bounded open set D of Rnn2. By means of a variational approach, we study the asymptotic behaviour of solutions of Ph, characterizing the limit problem for suitable sequences of random sets.

Attraverso un metodo variazionale, si studia un processo di omogeneizzazione relativo al p-Laplaciano in regioni perforate in maniera stocastica. Per particolari distribuzioni aleatorie dei buchi si caratterizza pienamente il problema limite.

Publié le : 2003-06-01
@article{BUMI_2003_8_6B_2_435_0,
     author = {M. Balzano and T. Durante},
     title = {The $p$-Laplacian in domains with small random holes},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {6-A},
     year = {2003},
     pages = {435-458},
     zbl = {1177.35061},
     mrnumber = {1988215},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2003_8_6B_2_435_0}
}
Balzano, M.; Durante, T. The $p$-Laplacian in domains with small random holes. Bollettino dell'Unione Matematica Italiana, Tome 6-A (2003) pp. 435-458. http://gdmltest.u-ga.fr/item/BUMI_2003_8_6B_2_435_0/

[1] Balzano, M., Random Relaxed Dirichlet Problems, Ann. Mat. Pura Appl. (IV), 153 (1988), 133-174. | MR 1008342 | Zbl 0673.60067

[2] Balzano, M.-Corbo Esposito, A.-Paderni, G., Nonlinear Dirichlet problems in randomly perforated domains, Rendiconti di Matematica e delle sue Appl., 17 (1997), 163-186. | MR 1484930 | Zbl 0886.49017

[3] Balzano, M.-Notarantonio, L., On the asymptotic behaviour of Dirichlet problems in a Riemannian manifold less small random holes, Rend. Sem. Mat. Univ. Padova, 100 (1998). | MR 1675287 | Zbl 0922.31008

[4] Baxter, J. R.-Jain, N. C., Asymptotic capacities for finely divided bodies and stopped diffusions, Illinois J. Math., 31 (1987), 469-495. | MR 892182 | Zbl 0618.60072

[5] Dal Maso, G., Comportamento asintotico delle soluzioni di problemi di Dirichlet, Conference XV Congress U.M.I. (Padova, Italy) 1995 - Boll. Un. Mat. Ital. (7), 11-A (1997), 253-277. | MR 1477778 | Zbl 0884.31002

[6] Dal Maso, G.-Defranceschi, A., Limits of nonlinear Dirichlet problems in varying domains, Manuscripta Math., 61 (1988), 251-278. | MR 949817 | Zbl 0653.49017

[7] Figari, R.-Orlandi, E.-Teta, A., The Laplacian in regions with many small obstacles: fluctuation aroun the limit operator, J. Statist. Phys., 41 (1985), 465-487. | MR 814842 | Zbl 0642.60053

[8] Heinonen, J.-Kilpeläinen, T., A-superharmonic functions and supersolutions of degenerate ellipitic equations, Arkiv för Matematik, 26 (1988), 87-105. | MR 948282 | Zbl 0652.31006

[9] Heinonen, J.-Kilpeläinen, T.-Martio, O., Nonlinear potential theory of degenerate ellipitic equations, Oxford Mathematical Monographs - Clarendon Press, 1993. | MR 1207810 | Zbl 0780.31001

[10] Kac, M., Probabilistic methods in some problems of scattering theory, Rocky Mountain J. Math., 4 (1974), 511-538. | MR 510113 | Zbl 0314.47006

[11] Ozawa, S., Random media and the eigenvalues of the Laplacian, Comm. Math. Phys., 94 (1984), 421-437. | MR 763745 | Zbl 0555.35101

[12] Papanicolaou, G. C.-Varadhan, S. R. S., Diffusion in regions with many small holes, Stochastic Differential Systems, Filtering and Control. Proc. of the IFIPWG 7/1 Working Conference (Vilnius, Lithuania, 1978), 190-206. Lectures Notes in Control and Information Sci., 25, Springer-Verlag, Berlin (1980). | MR 609184 | Zbl 0485.60076

[13] Ziemer, W. P., Weakly Differentiable Functions, Springer-Verlag, 1989. | MR 1014685 | Zbl 0692.46022