Homogenization of a one-dimensional model for compressible miscible flow in porous media
Choquet, Catherine
Bollettino dell'Unione Matematica Italiana, Tome 6-A (2003), p. 399-414 / Harvested from Biblioteca Digitale Italiana di Matematica

We discuss the homogenization of a one-dimensional model problem describing the motion of a compressible miscible flow in porous media. The flow is governed by a nonlinear system of parabolic type coupling the pressure and the concentration. Using the technique of renormalized solutions for parabolic equations and a compensated compactness argument, we prove the stability of the homogenization process.

Si considera un modello unidimensionale di flusso in un mezzo poroso eterogeneo di due fluidi miscibili e compressibili. Si studia l'omogeneizzazione del sistema parabolico che governa tale flusso, e si dimostra la stabilità della derivazione al livello macroscopico.

Publié le : 2003-06-01
@article{BUMI_2003_8_6B_2_399_0,
     author = {Catherine Choquet},
     title = {Homogenization of a one-dimensional model for compressible miscible flow in porous media},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {6-A},
     year = {2003},
     pages = {399-414},
     zbl = {1177.76404},
     mrnumber = {1988213},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2003_8_6B_2_399_0}
}
Choquet, Catherine. Homogenization of a one-dimensional model for compressible miscible flow in porous media. Bollettino dell'Unione Matematica Italiana, Tome 6-A (2003) pp. 399-414. http://gdmltest.u-ga.fr/item/BUMI_2003_8_6B_2_399_0/

[1] Amirat, Y.-Hamdache, K.-Ziani, A., Homogénéisation d'un modèle d'écoulements miscibles en milieu poreux, Asymptotic Anal., 3 (1990), 77-89. | MR 1043964 | Zbl 0702.35213

[2] Amirat, Y.-Hamdache, K.-Ziani, A., Homogenization of a model of compressible miscible flow in porous media, Boll. Un. Mat. Ital. B (7), 5 (1991), 463-487. | MR 1111133 | Zbl 0727.76093

[3] Amirat, Y.-Ziani, A., Global weak solutions for a parabolic system modeling a one-dimensional miscible flow in porous media, J. Math. Anal. Appl., 220 (1998), 697-718. | MR 1614944 | Zbl 0911.35063

[4] Bourgeat, A.-Mikelić, A., Homogenization of two-phase immiscible flows in a one-dimensional porous medium, Asymptotic Anal., 9 (1994), 359-380. | MR 1301170 | Zbl 0814.35103

[5] Douglas, J. Jr.-Roberts, J. E., Numerical methods for a model of compressible miscible displacement in porous media, Math. Comp., 41 (1983), 441-469. | MR 717695 | Zbl 0537.76062

[6] Koval, E. J., A method for predicting the performance of unstable miscible displacements in heterogeneous media, SPEJ trans. AIME, 228 (1963), 145-154.

[7] Lions, J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod/Gauthier-Villars, Paris, 1969. | MR 259693 | Zbl 0189.40603

[8] Murat, F., Compacité par compensation, Ann. Scuola Norm. Sup. Pisa (4), 5 (1978), 489-507. | MR 506997 | Zbl 0399.46022

[9] Murat, F., Soluciones renormalizadas de EDP elipticas no lineales, Prépublication du Laboratoire d'Analyse Numérique, Université de Paris 6, 93023, 1993.

[10] Peaceman, D. W., Fundamentals of Numerical Reservoir Simulation, Elsevier, 1977.

[11] Scheideger, A. E., The Physics of Flow through Porous Media, Univ. Toronto Press, 1974. | Zbl 0095.22402