The Poincaré lemma and local embeddability
Brinkschulte, Judith ; Hill, C. Denson ; Nacinovich, Mauro
Bollettino dell'Unione Matematica Italiana, Tome 6-A (2003), p. 393-398 / Harvested from Biblioteca Digitale Italiana di Matematica

For pseudocomplex abstract CR manifolds, the validity of the Poincaré Lemma for 0,1 forms implies local embeddability in CN. The two properties are equivalent for hypersurfaces of real dimension 5. As a corollary we obtain a criterion for the non validity of the Poicaré Lemma for 0,1 forms for a large class of abstract CR manifolds of CR codimension larger than one.

Per varietà CR astratte pseudoconvesse la validità del Lemma di Poincaré per forme di tipo 0,1 implica l'immergibilità locale in CN; le due proprietà sono equivalenti per ipersuperfici di dimensione reale 5. Come corollario si ottiene un criterio per la non validità del Lemma di Poincaré per forme di tipo 0,1 per una vasta classe di varietà CR astratte di codimensione CR maggiore di uno.

Publié le : 2003-06-01
@article{BUMI_2003_8_6B_2_393_0,
     author = {Judith Brinkschulte and C. Denson Hill and Mauro Nacinovich},
     title = {The Poincar\'e lemma and local embeddability},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {6-A},
     year = {2003},
     pages = {393-398},
     zbl = {1150.32010},
     mrnumber = {1988212},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2003_8_6B_2_393_0}
}
Brinkschulte, Judith; Hill, C. Denson; Nacinovich, Mauro. The Poincaré lemma and local embeddability. Bollettino dell'Unione Matematica Italiana, Tome 6-A (2003) pp. 393-398. http://gdmltest.u-ga.fr/item/BUMI_2003_8_6B_2_393_0/

[A] Akahori, T., A new approach to the local embedding theorem of CR-structures for n4, Mem. Amer. Math. Soc., 366 (1987), Amer. Math. Soc. Providence R.I. | MR 888499 | Zbl 0628.32025

[AFN] Andreotti, A.-Fredricks, G.-Nacinovich, M., On the absence of Poincaré lemma in tangential Cauchy-Riemann complexes, Ann. Sc. Norm. Sup. Pisa, 8 (1981), 365-404. | MR 634855 | Zbl 0482.35061

[AH] Andreotti, A.-Hill, C. D., E.E. Levi convexity and the Hans Lewy problem I, II, Ann. Sc. norm. sup. Pisa, 26 (1972), 325-363, 747-806. | Zbl 0283.32013

[B] Boutet De Monvel, L., Intégration des équations de Cauchy-Riemann induites formelles, Sem. Goulaouic-Lions-Schwartz (1974-1975). | MR 409893 | Zbl 0317.58003

[HN1] Hill, C. D.-Nacinovich, M., A weak pseudoconcavity condition for abstract almost CR manifolds, Invent. Math., 142 (2000), 251-283. | MR 1794063 | Zbl 0973.32018

[HN2] Hill, C. D.-Nacinovich, M., On the failure of the Poincaré lemma for the ¯M- complex, Quaderni sez. Geometria Dip. Matematica Pisa, 1.260.1329 (2001), 1-10.

[Hö] Hörmander, L., Linear Partial Differential Operators, Springer, Berlin (1963). | MR 404822

[JT] Jacobowitz, H.-Treves, F., Aberrant CR structures, Hokkaido Math. Jour., 12 (1983), 276-292. | MR 719968 | Zbl 0564.32010

[K] Kuranishi, M., Strongly pseudoconvex CR structures over small balls I-III, Ann. of Math., 115, 116 (1982), 451-500, 1-64, 249-330. | MR 662117 | Zbl 0576.32033

[N] Nacinovich, M., On the absence of Poincaré lemma for some systems of partial differential equations, Compos. Math., 44 (1981), 241-303. | MR 662464 | Zbl 0487.58026

[Ni] Nirenberg, L., On a problem of Hans Lewy, Uspeki Math. Naut, 292 (1974), 241-251. | MR 492752 | Zbl 0305.35017

[R] Rossi, H., LeBrun's nonrealizability theory in higher dimensions, Duke Math. J., 52 (1985), 457-474. | MR 792182 | Zbl 0573.32018

[W] Webster, S., On the proof of Kuranishi's embedding theorem, Ann. Inst. H. Poincaré, 9 (1989), 183-207. | MR 995504 | Zbl 0679.32020